Golder Associates Ltd.

32 Steacie Drive Kanata, Ontario, Canada K2K 2A9 Telephone 613-592-9600 Fax 613-592-9601

REPORT ON

2005 GROUNDWATER MONITORING PROGRAM COMMUNAL SEWAGE WORKS NATION MUNICIPALITY FOURNIER, ONTARIO

Submitted to:

Ontario Clean Water Agency 2015 Lajoie Street Box 252 Lefaivre, Ontario K0B 1J0

DISTRIBUTION:

2 copies - Ontario Clean Water Agency
2 copies - The Nation Municipality
2 copies - Golder Associates Ltd.

March 2006

06-1122-029

EXECUTIVE SUMMARY

The following Executive Summary highlights key points of the report only; for complete information, as well as limitations, it is necessary for the reader to examine the complete report.

The following report presents the results of the 2005 groundwater monitoring program at the Fournier communal sewage system located on part of Lot 1, Concession XIII, in the geographic Township of South Plantagenet, near the Village of Fournier, in The Nation Municipality, Ontario. The objectives of the 2005 monitoring program were: 1) to further define the baseline groundwater quality at the site; and 2) to provide an assessment of the Fournier Sewage System with respect to the site-specific trigger mechanisms and background groundwater quality. The Ministry of the Environment issued an amendment to the Certificate of Approval for the Fournier Septic System on December 23, 2003. Under the amended Certificate of Approval No. 1128-5S6KLC, the required groundwater monitoring program for the Fournier Sewage System consists of quarterly sampling sessions at upgradient groundwater monitoring locations MW99-6 and MW99-7 and at downgradient locations MW99-1, MW99-2 and MW99-3. Annual sampling and groundwater level measurements are also required at downgradient monitoring locations MW99-4 and MW99-5, and at reasonable use location MW99-8.

Groundwater elevation data indicates that the direction of shallow groundwater flow on the site is to the north. Based on these data, the shallow average linear groundwater flow velocity is estimated to be between 1.3 and 2.2 metres per year in 2005. Historically, the calculated flow velocity has ranged from 1 to 4 metres per year.

The following points summarize the interpretation of groundwater quality downgradient of the sewage system:

- Groundwater monitor MW99-1 (located approximately 5 metres downgradient of the sewage system) is interpreted to have been impacted by septic effluent since the end of 2001 based on elevated concentrations of typical sewage effluent parameters. The interpretation is supported by calculated average linear groundwater velocities.
- Groundwater monitor MW99-2 (located approximately 30 metres downgradient of the sewage system) is interpreted to have been impacted by septic effluent since the end of 2003 based on elevated concentrations of nitrate, and increasing conductivity and chloride values. The interpretation is not supported by calculated average linear groundwater velocities, however local variations in subsurface materials and hydrodynamic dispersion may explain the arrival of sewage effluent at this monitor earlier than expected.

 A number of parameters are elevated with respect to defined background groundwater quality in groundwater monitors MW99-4, MW99-5, and MW99-8 (located approximately 130 metres, 130 metres, and 270 metres downgradient, respectively). The elevated concentrations of these parameters are not related to impact by effluent from the sewage system.

Estimated average linear groundwater velocities suggest that the sewage-impacted groundwater may not reach MW99-3 for another 2 years (2007), and MW99-4 and MW99-5 for another 27 years (2032).

A new trigger mechanism and contingency plan does not need to be produced until the effluent impacted groundwater is one year from arriving at groundwater monitors MW99-4 and MW99-5. Since the effluent impacted groundwater is not expected to reach MW99-4 and MW99-5 for another 27 years, a new site specific trigger mechanism and contingency plan is not required at this time, and the Fournier Sewage System is in compliance in terms of effects on groundwater.

Sewage effluent impacts have not been detected at MW99-8, and are not expected to occur at MW99-8 until approximately 2067. Therefore, the Fournier Communal Sewage Works in compliance with MOE Guideline B-7.

Given that impacts due to the sewage works at MW99-4 and MW99-5 are not expected to occur until 2032, and impacts at the "Reasonable Use Monitor" (MW99-8) are not expected to occur until approximately 2067, a reduction of the monitoring program to annual monitoring at all groundwater monitors is recommended.

TABLE OF CONTENTS

	cutive Summary le of Contents		i iii
SEC	CTION		PAGE
1.0	INTRODUCTION	•••••	2
2.0	FIELD PROCEDURES	••••	3
3.0	GEOLOGICAL CONDITIONS		4
4.0	PHYSICAL HYDROGEOLOGY		5
5.0	GROUNDWATER QUALITY		6
6.0	GROUNDWATER COMPLIANCE ASSESSMENT		10
7.0	PROPOSED 2006 MONITORING PROGRAM		11
8.0	LIMITATIONS AND USE OF REPORT		12
REI	FERENCES	••••••	13
			In Order Following Page 13

LIST OF TABLES

- TABLE 1 Summary 2005 Groundwater Elevations
- TABLE 2 Summary of Upgradient Groundwater Quality Data
- TABLE 3 Interpretation of Groundwater Quality Data From Downgradient Groundwater Monitors

LIST OF FIGURES

- FIGURE 1 Key Plan
- FIGURE 2 Site Plan with Groundwater Elevations and Flow Directions

(October 2005)

TABLE OF CONTENTS – continued

LIST OF APPENDICES

APPENDIX A Amended Certificate of Approval (Sewage) No. 1128-5S6KLC,

dated December 23, 2003

APPENDIX B Record of Borehole Sheets

APPENDIX C Groundwater Chemical Analyses Data

APPENDIX D Report of Analyses Sheets - Accutest Laboratories Ltd

1.0 INTRODUCTION

This report presents the results of the 2005 groundwater monitoring program at the Fournier Communal Sewage Works. The sewage works is located on part of Lot 1, Concession XIII, in the geographic Township of South Plantagenet, near the Village of Fournier, in The Nation Municipality, Ontario (Figure 1). It is understood that the sewage works became operational in November or December 2000.

In 2000, Golder Associates Ltd. (Golder) conducted a borehole drilling and groundwater monitor installation program at the communal sewage works. The investigation included the drilling of eight boreholes and the installation of eight groundwater monitors (MW99-1 through MW99-8), as illustrated in Figure 2. For the purpose of defining the baseline groundwater quality at the Fournier sewage system site, monthly groundwater sampling and analysis was completed from August to December 2000. The results of this monitoring program are summarized in Golder Associates (2001).

In 2001, 2002 and 2003, Golder conducted groundwater monitoring programs that included monthly sampling from all eight groundwater monitors from January to December of each year. The results of these monitoring programs are summarized in Golder Associates (2002), Golder Associates (2003) and Golder Associates (2004), respectively. Beginning in 2004, the monitoring program frequently was reduced to quarterly. The main observations noted in the most recent 2004 Monitoring Report were as follows:

- Analytical results for the background monitors (MW99-6 and MW99-7) in 2004 were similar to those in reported in 2003, with chloride and conductivity increasing in both monitors through 2004;
- Groundwater monitor MW99-1 was the only monitor interpreted to be potentially
 impacted by the septic system. This groundwater monitor was interpreted to have become
 impacted at the end of 2001, based on increased concentrations of chloride, conductivity,
 and nitrate;
- Elevated concentrations of ammonia, bromide, chloride, conductivity, and DOC have been consistently reported in groundwater monitor MW99-4 compared to background concentrations;
- Seasonally elevated concentrations of bromide, chloride, and conductivity were reported in groundwater monitor MW99-5 compared to background concentrations;

- Elevated concentrations of ammonia, bromide, chloride, conductivity, DOC, nitrate, nitrite, sulphate, and TKN have been consistently reported in MW99-8 compared to background concentrations; and,
- The elevated concentrations of parameters in any groundwater monitors other than MW99-1 are not interpreted to be related to septic system impact.

1.1 Certificate of Approval

The Ministry of the Environment issued a Certificate of Approval (C of A) for the Fournier Sewage Works on December 23, 2003 (Appendix A), which replaced a previous C of A. The C of A includes a monitoring program and a new site specific trigger mechanism. Under C of A No. 1128-5S6KLC, the required groundwater monitoring program for the Fournier Sewage System includes:

- quarterly sampling sessions at upgradient monitoring locations MW99-6 and MW99-7;
- quarterly sampling sessions at downgradient locations MW99-1, MW99-2 and MW99-3;
 and,
- annual sampling and groundwater level measurements at downgradient monitoring locations MW99-4 and MW99-5, and at reasonable use location MW99-8.

Completion of this monitoring report satisfies Condition 7 (b) and (c) of the amended C of A.

1.2 2005 Monitoring Program

The objectives of the 2005 monitoring program were as follows:

- To further define the baseline groundwater quality at the site; and,
- To provide an assessment of the impact of the Fournier Communal Sewage System on groundwater with respect to the site-specific trigger mechanisms and background quality as measured in MW99-6 and MW99-7.

2.0 FIELD PROCEDURES

The groundwater monitoring sessions were conducted quarterly in March, June, August and October of 2005. Five groundwater monitors were sampled quarterly: MW99-1, MW99-2, MW99-3, MW99-6 and MW99-7. Monitor MW99-7 was found to require repair in March 2005 and could not be sampled. Groundwater monitors MW99-4, MW99-5 and MW99-8 were sampled annually, in August 2005. Groundwater levels at each of the monitoring locations were measured during each monitoring session. The groundwater monitors were then developed by the removal of at least three standing volumes of water using dedicated samplers. Sampling of groundwater using the dedicated samplers was performed in all groundwater monitors immediately after development.

The temperature, pH, and conductivity of groundwater were measured in the field at the time of sampling. Field conductivity and pH measurements were obtained using meters calibrated in the field prior to use. All samples were entered on a Chain of Custody Form and placed in coolers with ice packs and sent via courier to Accutest Laboratories Ltd. in Ottawa, Ontario for analysis of ammonia, bromide, chloride, dissolved organic carbon (DOC), *Escherichia coli* (*E.-coli*), fluoride, nitrate, nitrite, sulphate, and total kjeldahl nitrogen (TKN). In addition, samples collected from MW99-4 and MW99-5 were analyzed for total phosphorus and dissolved reactive phosphorous (DRP).

The groundwater samples collected for the specific analyses were collected, prepared, and preserved in the field using the following protocols:

Analytical Parameters	Preparation and Preservation Protocols
Ecoli	Plastic bottle, unfiltered, preserved with Na ₂ S ₂ O ₃
Sulphate, nitrate, nitrite, chloride, bromide, fluoride	Plastic bottle, unfiltered, unpreserved
DOC	Amber glass bottle with teflon lined cap, unfiltered, preserved to pH<2 with sulphuric acid
DRP	Plastic bottle, field filtered, unpreserved
TKN, total phosphorous, ammonia	Plastic bottle, unfiltered, preserved to pH<2 with sulphuric acid

3.0 GEOLOGICAL CONDITIONS

The geological conditions encountered during the 2000 borehole drilling and groundwater monitor installation program are shown on the Record of Boreholes in Appendix B. Details of the groundwater monitor installations for each of the boreholes are also included in the Record of Boreholes in Appendix B. It should be noted that the boundaries between strata on the Record of Borehole Sheets have been inferred from observations during drilling and non-continuous sampling; as such, their positions should be considered as transitional in nature rather than as an exact plane of geological change. Natural variations other than those encountered in the boreholes are expected to exist.

In general, the geological conditions at the site consist of a surficial topsoil layer underlain by fine sand to depths of between 0.9 and 2.7 metres. At each borehole location (except MW99-8), silty sand containing clay interbeds was present below the sand layer. At MW99-8, the sand is underlain by silty clay with sand seams. None of the boreholes at the site encountered bedrock (the maximum depth of investigation was 4.6 metres below ground surface).

4.0 PHYSICAL HYDROGEOLOGY

Groundwater levels measured in the monitors prior to each sampling event in 2005 are presented in Table 1. Elevations were referenced to a geodetic datum located at the invert of the inlet pipe at Pumping Station "B" (Figure 2).

As shown on Figure 2, groundwater elevations measured in October 2005 indicate that the shallow groundwater flow direction is to the north. This is consistent with the shallow groundwater flow direction observed in October 2004 as part of the 2004 groundwater monitoring program.

Grain size analysis completed by Neil A. Levac Engineering Ltd. (1999) on soil samples taken at the site indicate that the silty sand deposit has a hydraulic conductivity (K) of roughly 1×10^{-4} centimetres per second (based on the Hazen formula).

Horizontal hydraulic gradients (i) between groundwater monitors MW99-1 and MW99-2, MW99-1 and MW99-5, and MW99-1 and MW99-8 were calculated based on contours of 2005 groundwater elevations. The range of horizontal hydraulic gradients between selected upgradient and downgradient monitor pairs calculated using 2005 groundwater elevation data is summarized as follows:

Upgradient & Downgradient Monitors	Minimum Estimated Horizontal Hydraulic Gradient (Month)	Maximum Estimated Horizontal Hydraulic Gradient (Month)
MW99-1 & MW99-2	0.014 (March)	0.023 (August)
MW99-1 & MW99-5	0.022 (August)	0.025 (October)
MW99-1 & MW99-8	0.023 (August)	0.024 (October)
Range	0.014	0.025

NOTES:

Groundwater elevations were not measured at the following monitors in 2005: MW99-5 (March, June), MW99-8 (March, June). Hydraulic gradients could not be calculated at these monitors during these periods.

An estimate of average linear groundwater flow velocity can be calculated using the Darcy equation as follows:

$$v = \frac{-K}{n}i$$

Where ν is the average linear groundwater velocity, K is the hydraulic conductivity, n is the estimated percent porosity for sand (estimated to be approximately 35%; Cherry, 1979), and i is the horizontal hydraulic gradient. Based on this equation and the 2005 groundwater elevation data for the Fournier Sewage System site, the average linear groundwater velocity through the silty sand deposit is estimated to range from 1.3 to 2.2 metres per year. These values are similar to historical velocity estimates of 1 to 4 metres per year (Golder, 2001, 2002, 2003, 2004, 2005).

5.0 GROUNDWATER QUALITY

Groundwater quality in the vicinity of the communal sewage system was assessed based on the chemical, physical, and bacteriological results obtained for groundwater collected at each of the eight monitors in 2005. Current and historical results of field and laboratory chemical, physical, and bacteriological analyses of groundwater samples, along with relevant Ontario Drinking Water Standards, Objectives, and Guidelines (MOE, 2003), are presented in Appendix C. Copies of the report of analysis sheets from Accutest Laboratories for the 2005 groundwater monitoring program are provided in Appendix D.

The following discussions regarding compliance with the Ontario Drinking Water Standards, Objectives, and Guidelines (ODWQs) relate specifically to non-health related objectives (i.e., aesthetic objectives) and health related parameters for which a Maximum Acceptable Concentration (MAC) or Interim Maximum Acceptable Concentration (IMAC) have been established.

5.1 Upgradient Groundwater Quality

The background groundwater quality upgradient (south) of the sewage system is represented by groundwater samples collected at groundwater monitors MW99-6 and MW99-7. These monitors are hydrogeologically upgradient from the sewage system (see Figure 2) and are interpreted not to be impacted by effluent from the sewage system. Historical ranges of groundwater monitoring parameter concentrations (including 2005 data) from the upgradient monitors are summarized below:

	Ranges in Backgroun	ODWA.	
Parameters .	MW99-6	MW99-7	ODWQs
Ammonia	0.3-1.23	0.19-0.89	n/a
Bromide	<0.05-3.12	<0.05-0.75	n/a
Chloride	32-293	11-322	250 (AO)
Conductivity	380-1200	220-1180	n/a
DOC	<0.5-3.1	1.6-7.5	5 (AO)
E-coli (per 100 mL)	0-<10 ^c	0-1 (or <10 ^c)	. 0
Fluoride	0.13-0.76	<0.1-0.63	1.5ª
Nitrate	<0.1-1.19	<0.1-0.40	10
Nitrite	<0.1-<0.2	<0.1-<0.2	1
pН	6.2-9.5	6.3-8.4	n/a
Sulphate	<3-28	18-69	500 ^b (AO)
TKN	0.54-3.63	0.42-2.41	n/a

NOTES:

(AO) - Aesthetic objective

- a Where fluoride is added to drinking water, it is recommended that the concentration be adjusted to 0.5-0.8 mg/L the optimum level for control of tooth decay. Where supplies contain naturally occurring fluoride at levels higher than 1.5 mg/L but less than 2.4 mg/L the Ministry of Health and Long Term Care recommends an approach through local boards of health to raise public and professional awareness to control excessive exposure to fluoride from other sources.
- b when sulphate levels exceed 500 mg/L, water may have a laxative effect on some people.
- the minimum detection limit for e-coli in groundwater was reported as <10 four times during the monitoring period due to
 high sediment content in the sample. Discussions with the lab have resulted in a change in procedure for analysis for E-coli
 for this site which should allow for a consistent minimum detection limit of 0 per 100 mL.

The background groundwater quality at monitors MW99-6 and MW99-7 differs with respect to some parameters: groundwater concentrations of bromide, TKN and nitrate are higher in MW99-6 than in MW99-7; concentrations of ammonia and fluoride are slightly higher in MW99-6 than in MW99-7; concentrations of DOC and sulphate are somewhat higher in MW99-7 than in MW99-6; and, concentrations of chloride are slightly higher in MW99-7 than in MW99-6. Historically, analytical results reported for chloride in both wells and for DOC in MW99-7 did not meet ODWQs criteria.

A summary of the 2005 upgradient groundwater quality is provided in Table 2. Analytical results for MW99-6 and MW99-7 in 2005 were generally similar to those reported in 2004. In 2005, analytical results indicated conductivity and chloride concentrations showed a decreasing trend during the 3rd and 4th quarterly monitoring sessions, and were within the range of previously observed concentrations at these locations. The ODWQs aesthetic objective for chloride was exceeded at MW99-6 and MW99-7. The DOC concentration at MW99-7 also exceeded the ODWQs aesthetic objective in June 2005. The remaining parameters analysed for in 2005 met the applicable ODWQs criteria at monitors MW99-6 and MW99-7. Although conductivity and chloride concentrations have been increasing since late 2002 at MW99-7, nitrate concentrations were below the laboratory detection limit in 2005 and it is concluded that this monitor is not affected by sewage system effluent. It is also concluded that MW99-6 is not affected by sewage system effluent.

5.2 Downgradient Groundwater Quality

It is understood that the Fournier Communal Sewage System became operational in November or December 2000. Groundwater monitor MW99-1C (located approximately 5 metres downgradient of the sewage works) is interpreted to have been impacted by septic effluent since the end of 2001. Based on the historical range in estimated groundwater flow velocity (1 to 4 metres per year), approximate arrival times for sewage system effluent at the downgradient monitoring wells (disregarding retardation and hydrodynamic dispersion) were determined. The following table provides the earliest expected arrival times (i.e., using the highest historical estimated groundwater flow velocity):

Location	Downgradient Distance from MW99-1 (m)	Minimum Estimated Groundwater Travel Time from MW99-1 (years)	Earliest Estimated Arrival Time	Minimum Number of Years Until Arrival
MW99-2, MW99-3	25	6	End of 2007	2
MW99-4, MW99-5	125	31	End of 2032	27
MW99-8	265	66	End of 2067.	62

^{*}Measured from the end of 2005

As illustrated in the above table, the minimum estimated time for groundwater impacted by sewage system effluent to reach downgradient monitors MW99-2 and MW99-3, MW99-4 and MW99-5, and MW99-8 is 2 years, 27 years, and 62 years, respectively.

A comparison of the downgradient groundwater quality to background conditions in groundwater monitors MW99-6 and MW99-7 and an interpretation of the 2005 monitoring data are presented in Table 3. The following points summarize the interpretation of the downgradient groundwater quality data:

- groundwater at MW99-1 is interpreted to have been impacted by sewage effluent since the end of 2001 based on elevated chloride, conductivity and nitrate concentrations, which are typically sewage effluent indicator parameters. This interpretation is supported by calculated values for groundwater flow velocity which indicates that groundwater impact by the sewage system could have started in 2001;
- groundwater at MW99-2 is interpreted to be impacted by sewage effluent since the end of 2003 based on rising chloride, conductivity and nitrate concentrations. Nitrate concentrations in 2005 were elevated above the ODWQS in monitor MW99-2;
- groundwater at MW99-3 is interpreted to not be impacted by sewage effluent based on reported groundwater quality;
- ammonia, bromide, chloride, conductivity, DOC, nitrite (slight recent increase), nitrate, sulphate, and TKN are generally elevated in monitor MW99-4 compared to background concentrations, however, the elevated concentrations of these parameters are not interpreted to be related to impact by sewage effluent. This interpretation is supported by calculated values for groundwater flow velocity which indicate that sewage system related impacts are not expected at MW99-4 until roughly 2032 (disregarding dispersion). Concentrations of most of these parameters were also elevated at MW99-4 prior to operation of the sewage system;
- concentrations of bromide, chloride, and conductivity are historically elevated at MW99-5 between fall and early spring compared to background concentrations, however, the elevated concentrations of these parameters are interpreted to not be related to impact by effluent from the sewage system. This interpretation is supported by calculated values for groundwater flow velocity which indicate sewage related impacts are not expected at MW99-5 until roughly 2032. Concentrations of most of these parameters were also elevated at MW99-5 prior to operation of the sewage system; and,

• concentrations of ammonia, bromide, chloride, conductivity, DOC, nitrate, nitrite, sulphate, and TKN are consistently elevated in monitor MW99-8 compared to background concentrations, however, the elevated concentrations of these parameters are interpreted not to be related to impact from sewage effluent. This interpretation is supported by calculated values for groundwater velocity which indicate that sewage system related impacts are not expected at MW99-8 until roughly 2067. Concentrations of these parameters were also elevated at MW99-8 prior to operation of the sewage works.

Groundwater monitor MW99-2, located approximately 30 metres downgradient of the sewage system, began to exhibit groundwater quality impacts as a result of the sewage system in late 2003. Average linear groundwater flow velocity on the site has been estimated to range between 1 and 4 metres per year. Hence, the arrival of groundwater impacted by effluent from the sewage system at MW99-2 approximately three to four years after the sewage system became operational indicates that dispersion and/or local areas of more hydraulically conductive material may be causing higher groundwater flow velocities in the vicinity of MW99-2.

6.0 GROUNDWATER COMPLIANCE ASSESSMENT

MOE Guideline B-7 (MOE, 1994), the "Reasonable Use Guideline" addresses the levels of offsite sewage effluent impact on groundwater considered acceptable by the MOE and defines the level of impact on groundwater beyond which some form of mitigation measure(s) would be warranted. MOE Guideline B-7 is applicable to the Fournier Sewage Works.

Under MOE Guideline B-7, a change in the quality of groundwater on adjacent properties will only be acceptable if the quality is not degraded in excess of fifty percent of the difference between background concentrations and established water quality criteria for aesthetic related parameters, and twenty-five percent of the difference between background conditions and established water quality criteria for health parameters.

MOE Guideline B-7 applies to groundwater quality impact at the site boundary (i.e., the point of site compliance). MW99-8 is the groundwater monitor that is nearest the downgradient site boundary, and is therefore considered to be the "Reasonable Use" compliance monitor.

The groundwater quality reported to date in monitoring wells MW99-6 and MW99-7 are assumed to represent background groundwater quality within the shallow overburden in the vicinity of the sewage works. The ODWQS standards and objectives are used to represent the established water quality criteria.

Sewage effluent impacts have not been detected at MW99-8, and are not expected to occur at MW99-8 until approximately 2067 (see section 5.2). Therefore, the Fournier Communal Sewage Works is in compliance with MOE Guideline B-7.

Condition 8 (1) of C of A for the Fournier Sewage Works states:

One year prior to the anticipated arrival of the septic effluent impacted groundwater plume at monitoring wells MW99-4 and MW99-5, the Owner shall conduct a comprehensive analysis of all past monitoring data and assess the impacts of the works on the groundwater and surface water and initiate the development of a trigger mechanism for the implementation of a contingency plan for the site to ensure that the Reasonable Use requirements are met and any significant impacts to the surface water are mitigated. The Owner shall submit the assessment, proposed trigger mechanism and contingency plan to the Regional Director for review and approval.

Based on the estimated annual average linear groundwater velocity, groundwater impacted by effluent from the Fournier Sewage System is expected to reach MW99-4 and MW99-5 roughly 27 years from present (2032). Therefore, the development of a site-specific trigger mechanism will not likely be necessary in the near future.

7.0 PROPOSED 2006 MONITORING PROGRAM

The proposed 2006 monitoring program for the Fournier Sewage Works is based on Condition 4(3) in the Terms and Conditions of the C of A. The monitoring program for collection of groundwater levels and samples is required to be quarterly for upgradient and immediately downgradient monitoring locations, and annually for the further downgradient monitoring locations. The following summarizes the sampling locations, frequency, and parameters to be sampled:

Location Type	Frequency	Monitoring Locations	Parameters
Upgradient	0	MW99-6 MW99-7	TKN, total ammonia nitrogen, nitrate- nitrogen, nitrite-nitrogen, DOC,
Immediately Downgradient	Quarterly	MW99-1 MW99-2 MW99-3	anions (chloride, bromide, fluoride, and sulphate), <i>Ecoli</i> , pH, temperature, conductivity
Reasonable Use		MW99-8	
Downgradient	Annually	MW99-4 MW99-5	TKN, total ammonia nitrogen, nitrate- nitrogen, nitrite-nitrogen, DOC, anions (chloride, bromide, fluoride, and sulphate), Ecoli, total phosphorus, dissolved reactive phosphorus, pH, temperature, conductivity

Given that impacts due to the sewage works at MW99-4 and MW99-5 are not expected to occur until approximately 2032, and impacts at the "Reasonable Use Monitor" (MW99-8) are not expected to occur until approximately 2067, annual monitoring, at all groundwater monitors should be sufficient. In accordance with the C of A, monitoring frequency can be modified by the District Manager. Therefore, it is recommended that the District Manager be requested to modify the monitoring program such that annual, not quarterly monitoring is conducted at MW99-1, MW99-2, MW99-3, MW99-6 and MW99-7, and annual monitoring continue at MW99-4, MW99-5 and MW99-8.

8.0 LIMITATIONS AND USE OF REPORT

This report was prepared for the exclusive use of the Ontario Clean Water Agency and the Nation Municipality. The report, which especially includes all tables, figures, and appendices, is based on data and information collected by Golder Associates Ltd. and is based solely on the conditions of the properties at the time of the work, supplemented by historical information and data obtained by Golder Associates Ltd. as described in this report, and in the previous reports prepared by Golder Associates Ltd. (see References for list of previous reports). Each of these reports must be read and understood collectively, and can only be relied upon in their totality.

The assessment of environmental conditions and possible hazards at this site has been made using the results of physical measurements and chemical analyses of liquids from a number of locations. The site conditions between sampling locations have been inferred based on conditions observed at borehole and monitoring well locations. Subsurface conditions may vary from these sampled locations.

The services performed, as described in this report, were conducted in a manner consistent with that level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions, subject to limits and financial and physical constraints applicable to the services.

Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Golder Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The findings and conclusions of this report are valid only as of the date of this report. If new information is discovered in future work, including excavations, borings, or other studies, Golder Associates Ltd. should be requested to re-evaluate the conclusions of this report, and to provide amendments as required.

GOLDER ASSOCIATES LTD.

Caitlin Cooke, M.Sc.

Environmental Scientist

Brian T. Byerley, M.Sc. P.

Hydrogeologist/Associate

CAMC:BTB:em:al

n:\active\2006\1122 - environmental\06-1122-029 fournier sewage\2005 report\rpt-001 06mar01 fournier 2005 annual.doc

REFERENCES

- Freeze, R.A. and Cherry, J.A. Groundwater. New Jersey. Prentice-Hall Inc., 604 p. 1979.
- Golder Associates, 2005. 2004 Groundwater Monitoring Program, Communal Sewage System, Nation Municipality, Fournier, Ontario, Report No. 04-1120-707, February 2005.
- Golder Associates, 2004. 2003 Groundwater Monitoring Program, Communal Sewage System, Nation Municipality, Fournier, Ontario, Report No. 03-1120-707, February 2004.
- Golder Associates, 2003. 2002 Groundwater Monitoring Program, Communal Sewage System, Nation Municipality, Fournier, Ontario, Report No. 021-2735-1, March 2003.
- Golder Associates, 2002. 2001 Groundwater Monitoring Program, Communal Sewage System, Nation Municipality, Fournier, Ontario, Report No. 001-2772-1, January 2002.
- Golder Associates, 2001. 2000 Groundwater Monitoring Program, Communal Sewage System, Nation Municipality, Fournier, Ontario, Report No. 001-2772, March 2001.
- Neil A. Levac Engineering Ltd., 1999. Fournier Commercial Septic System, Additional Treatment Contingency Plan, Letter to Ministry of Environment dated April 7, 1999.
- Ministry of the Environment, 2003. Ontario Drinking Water Objectives, June 2003. Ontario Ministry of the Environment.
- Ministry of the Environment, 1994. Guideline B-7: Incorporation of the Reasonable Use Concept into MOE Groundwater Management: Ontario Ministry of the Environment Program Development Branch: Ontario Ministry of the Environment, April 1994, 8p.

TABLE 1 2005 GROUNDWATER ELEVATIONS

Monitoring -	Ground Surface	Top of Casing	Groundwater Elevation (masl)			
Well	Elevation (masi)	Elevation (masl)	Mar 17 2005	Jun 09 2005	Aug 02 2005	Oct 21 2005
MW99-1	53.5	54.1	52.4	52.3	52.0	52.5
MW99-2	53.1	53.8	52.0	51.8	51.4	52.1
MW99-3	53.7	53.7	51.9	51.7	51.3	52.1
MW99-4	52.9	51.7	n/a	n/a	48.8	49.3
MW99-5	51.5	52.3	n/a	n/a	49.2	49.5
MW99-6	52.9	53.6	51.5	51.3	51.0	52.1
MW99-7	53.4	54.1	n/a	52.3	52.0	53.0
MW99-8	47.7	48.4	n/a	n/a	45.9	46.4

Notes

n/a - data not available

TABLE 2

SUMMARY OF UPGRADIENT GROUNDWATER QUALITY DATA

Sampling Location	Location	Parameters Exceeding ODWQS in 2005	Historical Trend(s)
MW99-6	80 metres west of edge of leaching bed	chloride, pH	 Chloride concentrations slightly higher than average in 2004 and 2005; Somewhat higher conductivity early 2003 to early 2005; late 2005 had a decreasing trend in concentrations; Variable sulphate concentrations; pH above ODWQS in March 2005.
MW99-7	120 metres southeast of leaching bed	chloride, DOC	 Increasing trend for chloride and conductivity since late 2002; Increasing trend for sulphate concentrations since late 2003; Minor increase in DOC near end of 2004 to slightly above ODWQS. Below ODWQS in late 2005.

TABLE 3

INTERPRETATION OF GROUNDWATER QUALITY DATA FROM DOWNGRADIENT GROUNDWATER MONITORS

Sampling Location	Parameters Exceeding			sistently Elevated ackground Concentrations at	Hydrogeological Interpretation
	2005		MW 99-6	MW99-7	
MW99-1	chloride, nitrate	 chloride, conductivity, sulphate and nitrate concentrations increased significantly in late 2001/early 2002 and remained elevated through 2005; nitrite increased significantly in late 2001 to 2003, and remained elevated in 2004 and 2005; variable fluoride concentrations. 	chloride, conductivity, sulphate and nitrate (since late 2001/early 2002), nitrite (late 2001-2003), DOC, sulphate	chloride, conductivity and nitrate (since late 2001/early 2002), nitrite (late 2001-2003) sulphate	 borehole MW99-1 is located approximately 5 metres downgradient from leaching beds (see Figure 2); groundwater continues to show indications of impact by effluent from sewage system since late 2001/early 2002.
MW99-2	nitrate	increases in nitrate, conductivity, chloride since end of 2003.	Nitrate (since end of 2003)	Nitrate (since end of 2003)	 borehole MW99-2 is located approximately 30 metres downgradient from leaching beds (see Figure 2); groundwater interpreted to be starting to show signs of being impacted by the sewage system at this time based on increases in nitrate concentrations and an increase in conductivity.
MW99-3	none	groundwater quality generally consistent over time; chloride and conductivity increasing since early 2004.	Sulphate (with the exception of 2005)	Sulphate (prior to 2003)	 borehole MW99-3 is located approximately 30 metres downgradient from leaching beds (see Figure 2); groundwater interpreted to not be impacted by sewage system at this time based on groundwater quality and flow velocity.
MW99-4	chloride	groundwater quality variable over time; fluctuating concentrations of ammonia, bromide, chloride, and conductivity levels.	ammonia, bromide (excluding 2005), chloride, conductivity, DOC, nitrite (prior to 2004), nitrate, sulphate, and TKN	ammonia, bromide (excluding 2005), chloride, conductivity, nitrite (prior to 2004), nitrate, and TKN	borehole MW99-4 is located approximately 130 metres downgradient from leaching beds (see Figure 2); groundwater interpreted to not be impacted by sewage system based on groundwater flow velocity; source(s) of elevated ammonia, bromide, chloride, conductivity, and DOC in groundwater is/are interpreted to be other than the sewage system.

TABLE 3 – continued

INTERPRETATION OF GROUNDWATER QUALITY DATA FROM DOWNGRADIENT GROUNDWATER MONITORS

Sampling Location	Parameters Exceeding ODWQS in	Historical Trend(s)	Parameters Consistently Elevated Compared to Historical Background Concentrations at		Hydrogeological Interpretation
	2005		MW 99-6	MW99-7	
MW99-5	none	 increase in average concentrations of bromide, chloride, and conductivity (2001-2003); bromide, chloride, and conductivity low in 2004-2005; seasonal trends in chloride, bromide and conductivity levels are similar. 	chloride (seasonally), conductivity (seasonally), sulphate	bromide (seasonally), chloride (seasonally), conductivity (seasonally)	 borehole MW99-5 is located about 130 metres downgradient from leaching beds (see Figure 2); groundwater interpreted to not be impacted by sewage system based on groundwater flow velocity; elevated chloride, bromide, and conductivity in groundwater are interpreted not to be related to sewage system.
MW99-8	chloride, DOC	 groundwater quality variable over time; nitrite concentration typically greater than upgradient concentrations since mid 2002; sulphate concentrations variable; frequent spikes in bromide concentration; chloride concentrations typically much greater than upgradient concentrations. 	ammonia, bromide, chloride, conductivity, DOC, nitrite, nitrate, sulphate, and TKN	ammonia, bromide, chloride, conductivity, DOC, nitrate, nitrite, sulphate, and TKN	 borehole MW99-8 is located across municipal drain 270 metres downgradient from the leaching beds system (see Figure 2); groundwater interpreted to not be impacted by sewage system based on groundwater flow velocity; elevated ammonia, bromide, chloride, conductivity, DOC, nitrate, nitrite, sulphate, and TKN in groundwater is/are interpreted not to be related to sewage system; groundwater quality at this location may be affected by a nearby drainage ditch (approximately 1.5 metres deep).

APPENDIX A

CERTIFICATE OF APPROVAL (SEWAGE) NO. 1128-5S6KLC DATED DECEMBER 23, 2003

Ministry of the Environment

Ministère de l'Environnement

SER ASSOCIATES

SUR ASSOCIATES

SUR ASSOCIATES

NUNICIPAL AND F

AMENDED CERTIFICATE OF APPROVAL MUNICIPAL AND PRIVATE SEWAGE WORKS NUMBER 1128-556KLC

The Corporation of the Municipality of The Nation

Rural Route, No. 3 Casselman, Ontario K0A 1M0

Site Location: Village of Fournier Communal Sewage Works

Lot 1, Concession XIII

The Nation Municipality, United Counties of Prescott and Russell

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

the existing municipal sewage works for the collection, transmission, treatment and disposal of domestic sewage, in the Village of Fournier, with a *Rated Capacity* of 97,600 litres per day and consisting of the following:

Sanitary Sewers

- sanitary sewers on County Road 10, St. Joseph Street, Union Street, Park Street, County Road 15, Easement, and Church Street;

Sewage Pumping Stations

- Sewage Pumping Station A comprising of a 2.4 mm diameter by 3.0 m deep underground wet well constructed on the south side of County Road 10 approximately 65 m west of St. Joseph Street, equipped with two (2) submersible pumps (one duty and one standby), each pump having a rated capacity of 2.5 L/s at a T.D.H. of 11.0 m with a 1.2 kW electrical drive with a 100 mm diameter forcemain discharging to a manhole located at the intersection of County Road 10 and County Road 15;
- Sewage Pumping Station B comprising of a 2.4 mm diameter by 6.0 m deep underground wet well constructed approximately 85 m west of County Road 15 and approximately 105 m north of Park Street, equipped with two (2) submersible pumps (one duty and one standby), each pump having a rated capacity of 5.0 L/s at a T.D.H. of 8.0 m with a 1.2 kW electrical drive with a 100 mm diameter forcemain discharging to the inlet septic tank of the Sewage Treatment System;

Sewage Treatment System

1. Septic Tanks

- eight (8) 45,400 litre capacity precast concrete septic tanks, installed in series approximately 155 m west of Sewage Pumping Station B, equipped with two (2) cartridge effluent filters at the outlet of the last septic tank with the effluent discharging to the recirculation tank of the biological sand filtration system;

2. Biological Sand Filtration System

- a biological sand filter recirculating system installed immediately west of the last septic tank, consisting of two (2) 45,400 litre capacity recirculation tank, four (4) sets of two (2) alternating dosing pumps with four (4) distributing valve assemblies, four (4) sand filter return pumps with a recirculating valve assembly, and associated recirculating timer and flow control units for dosing septic tank effluent to the recirculation sand filter and recirculating sand filter effluent back to the recirculation tank, each dosing pump having a rated capacity of 1.9 L/s at a T.D.H. of 18.9 m with a 0.37 kW electric drive with a 50 mm diameter forcemain to dose septic tank effluent onto the recirculation sand filter, each return pump having a rated capacity of 1.9 L/s at a T.D.H. of 18.9 m with a 0.37 kW electric drive with a forcemain to return sand filter effluent to the recirculation tank;
- a 28.8 m by 21.0 m recirculation biological sand filter having a hydraulic loading of 6.8 L/m²/hr, constructed approximately 3.5 m south of the recirculation tank consisting of 600 mm deep sand media of effective size of 1 to 3 mm and uniformity coefficient of less than 2.0 in four (4) cells of six (6) zones, each cell having twelve (12) 25 mm diameter distribution pressure pipes of 21 m long connected to the distributing valve assembly at the front end of the sand filter and two (2) 100 mm diameter of perforated drain pipes at the bottom of the sand filter, each distribution pipe having thirty-five (35) 3.2 mm diameter orifices facing upward spaced at 600 mm interval and covered by orifice shields, installed on the sand filter surface, a pumping chamber located in the middle of each cell and connected the two perforated filter drain pipes to return the recirculation sand filter effluent to the recirculation tank;

Subsurface Disposal System

1. Effluent Dosing Chamber

- four (4) 86,400 litre precast concrete septic tanks, installed in series approximately 155 m west of Sewage
- a 6,000 litre, precast concrete leaching bed dosing chamber installed approximately 1 m north of the recirculation tank and equipped with two (2) sets of two (2) alternating submersible pumps, each pump having a rated capacity of 2.0 L/s at a T.D.H. of 27.3 m with a 0.75 kW electric drive, including a distribution valve assembly per pump set, liquid level and pump timer controls together with 50 mm diameter forcemains to dose recirculation sand filter effluent through the distribution boxes to a subsurface disposal system;

2. Leaching Beds

ten (10) 30 m long by 14.4 m wide raised absorption trench type leaching beds of imported sand with 9 min/cm percolation rate, constructed approximately 6 m north of leaching bed pumping chamber including imported mantle of 9 min/cm percolation rate extending 15 m north from the leaching bed and, each leaching bed consisting of ten (10) 100 mm diameter perforated pipes of 30 m long at 1.6 m interval together with header pipes from the distribution box;

Emergency Power Supply

three (3) portable stand-by engine driven generators with a minimum continuous rating of 40 kW (electrical) per generator, provided and located in the municipal garage for the Nation Municipality to provide emergency power necessary to operate Sewage Pumping Stations A and B and septic system pumps and controls during power outage;

Miscellaneous

- all other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances

essential for the proper operation of the aforementioned sewage works;

all in accordance with the following submitted supporting documents:

- 1. Application for Amendment to Certificate of Approval for Fournier Communal Sewage System submitted by C. Vandelst of Golder Associates dated September 3, 2003;
- 2. Communal septic system design report, final plans and specifications prepared by Neil A. Levac Engineering Ltd., Consulting Engineers.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

- "Act" means the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, as amended;
- "Average Daily Flow" means the cumulative total sewage flow to the sewage works during a calendar year divided by the number of days during which sewage was flowing to the sewage works that year;
- "By-pass" means any discharge from the Works that does not undergo any treatment or only receives partial treatment before it is discharged to the environment;
- "CBOD5" means five day carbonaceous (nitrification inhibited) biochemical oxygen demand measured in an unfiltered sample;
- "Certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the Act, and includes any schedules;
- "Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Act;
- "District Manager" means the District Manager of the Kingston District Office of the Ministry;
- "E. Coli" refers to the thermally tolerant forms of Escherichia that can survive at 44.5 degrees Celsius;
- "Ministry" means the Ontario Ministry of the Environment;
- "Owner" means the Corporation of the Municipality of The Nation and includes its successors and assignees;
- "Rated Capacity" means the Average Daily Flow for which the Works are approved to handle;
- "Regional Director" means the Regional Director of the Eastern Region of the Ministry;
- "Works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. GENERAL PROVISIONS

- (1) The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Certificate and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- (3) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- (4) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. CHANGE OF OWNER

- (1) The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within 30 days of the change occurring:
 - (a) change of Owner;
 - (b) change of address of the Owner;
 - (c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*;
 - (d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations Informations Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*;
- (2) In the event of any change in ownership of the *Works*, other than a change to a successor municipality, the *Owner* shall notify in writing the succeeding owner of the existence of this *Certificate*, and a copy of such notice shall be forwarded to the *District Manager* and the *Director*.

3. RECORD DRAWINGS

(1) A set of as-built drawings showing the works "as constructed" shall be kept up to date through revisions undertaken from time to time and a copy shall be retained at the Works for the operational life of the Works.

4. MONITORING AND RECORDING

The Owner shall, upon commencement of operation of the Works, carry out the following monitoring program:

- (1) All samples and measurements taken for the purposes of this *Certificate* are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.
- (2) Samples shall be collected of the raw sewage and the effluent being discharged to the subsurface disposal system at the frequency specified, by means of the specified sample type and analyzed for each parameter listed and all results recorded:

	Table 1 - Raw Sewage Monitoring				
Frequency	Quarterly				
Sample Type	Grab				
Parameters	CBOD5, Total Suspended Solids, Total Phosphorus, Total Kjeldahl Nitrogen				

Table 2 - Effluent Monitoring - effluent discharged to subsurface disposal system				
Frequency	Frequency Monthly			
Sample Type	Grab			
Parameters	CBOD5, Total Suspended Solids, Total Phosphorus, Total Kjeldahl Nitrogen, Total Ammonia Nitrogen, Nitrate-Nitrogen, Nitrite-Nitrogen, Alkalinity and E. Coli			

(3) Samples shall be collected of the groundwater in the eight existing groundwater monitoring wells MW99-1 to MW99-8 at the frequency specified, by means of the specified sample type and analyzed for each parameter listed and all results recorded:

Table 3 - Groundwater Monitoring - upgradient wells MW99-6 and MW99-7		
Frequency	Quarterly	
Sample Type	Grab	
Parameters	Total Kjeldahl Nitrogen, Total Ammonia Nitrogen, Nitrate-Nitrogen, Nitrite-Nitrogen, Dissolved Organic Carbon, Anions (chloride, bromide, fluoride and sulphate), E. Coli, pH, Temperature and Conductivity	

Table 4 - Groundwater Monitoring - downgradient wells MW99-1, MW99-2 and MW99-3		
Frequency	Quarterly	
Sample Type	Grab	
Parameters	Total Kjeldahl Nitrogen, Total Ammonia Nitrogen, Nitrate-Nitrogen, Nitrite-Nitrogen, Dissolved Organic Carbon, Anions (chloride, bromide, fluoride and sulphate), E. Coli, pH, Temperature and Conductivity	

Table 5 - Groundwater Monitoring - downgradient well MW99-8 (reasonable use)		
Frequency	Annually (subject to subsection 6)	
Sample Type	Grab	
Parameters	Total Kjeldahl Nitrogen, Total Ammonia Nitrogen, Nitrate-Nitrogen, Nitrite-Nitrogen, Dissolved Organic Carbon, Anions (chloride, bromide, fluoride and sulphate), E. Coli, pH, Temperature and Conductivity	

Table 6 - Groundwater Monitoring - downgradient wells MW99-4 and MW99-5 (surface water impact)		
Frequency	Annually (subject to subsection 6)	
Sample Type	Grab	
Parameters	Total Kjeldahl Nitrogen, Total Ammonia Nitrogen, Nitrate-Nitrogen, Nitrite-Nitrogen, Dissolved Organic Carbon, Anions (chloride, bromide, fluoride and sulphate), E. Coli, Total Phosphorus, Dissolved Phosphorus, pH, Temperature and Conductivity	

- (4) The Owner shall measure or estimate and record the daily volume of effluent being discharged to subsurface disposal system.
- (5) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:
 - (a) the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only), as amended from time to time by more recently published editions;
 - (b) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Page 6 - NUMBER 1128-5S6KLC

Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and

- (c) the publication "Standard Methods for the Examination of Water and Wastewater" (20th edition), as amended from time to time by more recently published editions.
- (6) The monitoring frequency at monitoring wells MW99-4, MW99-5 and MW99-8 shall be increased to quarterly as the septic effluent impacted groundwater plume is within five years of anticipated arrival at MW99-4 and MW99-5.
- (7) The measurement frequencies specified in subsections (2) and (3) in respect to any parameter are minimum requirements which may, after 12 months of monitoring in accordance with this Condition, be modified by the *District Manager* in writing from time to time.

5. <u>EFFLUENT OBJECTIVES</u>

The Owner shall use best efforts to design, construct and operate the Works with the objective that the concentrations of the materials named below as effluent parameters are not exceeded in the effluent being discharged to the subsurface disposal system.

Table 3 - Effluent Objectives			
Effluent Parameter	Concentration Objective (milligrams per litre unless otherwise indicated)		
CBOD5	10.0		
Total Suspended Solids	10.0		

6. OPERATIONS AND MAINTENANCE

- (1) The Owner shall maintain an operations manual for the Works, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the Works; and
 - (b) inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary.
- (2) The Owner shall maintain the operations manual current and retain a copy at the location of the Works for the operational life of the Works. Upon request, the Owner shall make the manual available to Ministry staff.

7. REPORTING

(1) The Owner shall prepare, and submit upon request, a performance report, on an annual basis, within ninety (90) days following the end of the period being reported upon. The first such report shall cover the first annual period following the commencement of operation of the Works and subsequent reports shall be submitted to cover successive annual periods following thereafter. The reports shall contain, but shall not be limited to, the following information:

- (a) a summary and interpretation of all raw sewage and effluent monitoring data and a comparison to the effluent objectives outlined in Condition 5, including an overview of the success and adequacy of the *Works*;
- (b) a summary and interpretation of all groundwater monitoring data and a comparison to the established baseline background groundwater quality;
- (c) a delineation of the septic effluent impacted groundwater plume and the documentation of the movement and anticipated arrival of the plume at monitoring wells MW99-4 and MW99-5;
- (d) a tabulation of the daily volumes of effluent disposed through the subsurface disposal system during the reporting period;
- (e) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the *Works*; and
- (f) a description of any operating problems encountered and corrective actions taken.

8. GROUNDWATER AND SURFACE WATER IMPACTS CONTINGENCY PLAN

- (1) One year prior to the anticipated arrival of the septic effluent impacted groundwater plume at monitoring wells MW99-4 and MW99-5, the *Owner* shall conduct a comprehensive analysis of all past monitoring data and assess the impacts of the *works* on the groundwater and surface water and initiate the development of a trigger mechanism for the implementation of a contingency plan for the site to ensure that the Reasonable Use requirements are met and any significant impacts to the surface water are mitigated. The *Owner* shall submit the assessment, proposed trigger mechanism and contingency plan to the *Regional Director* for review and approval.
- (2) The contingency plan shall be implemented within two (2) years of the setting off of the trigger mechanism.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the *Works* are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review. The condition also advises the Owners their responsibility to notify any person they authorized to carry out work pursuant to this *Certificate* the existence of this *Certificate*.
- 2. Condition 2 is included to ensure that the *Ministry* records are kept accurate and current with respect to the approved works and to ensure that subsequent owners of the *Works* are made aware of the *Certificate* and continue to operate the *Works* in compliance with it.
- 3. Condition 3 is included to ensure that the *Works* are constructed in accordance with the approval and that record drawings of the *Works* "as constructed" are maintained for future references.

- 4. Condition 4 is included to enable the *Owner* to evaluate and demonstrate the performance of the *Works*, on a continual basis, so that the *Works* are properly operated and maintained at a level which is consistent with the design objectives specified in the *Certificate* and that the *Works* does not cause any impairment to the receiving watercourse.
- 5. Condition 5 is imposed to establish non-enforceable effluent quality objectives which the *Owner* is obligated to use best efforts to strive towards on an ongoing basis. These objectives are to be used as a mechanism to trigger corrective action proactively and voluntarily before environmental impairment occurs.
- 6. Condition 6 is included to require that the *Works* be properly operated, maintained, and equipped such that the environment is protected. As well, the inclusion of an operations manual, maintenance agreement with the manufacturer for the treatment process/technology and a complete set of "as constructed" drawings governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the owner and made available to the *Ministry*. Such a information is an integral part of the operation of the *Works*. Its compilation and use should assist the *Owner* in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for *Ministry* staff when reviewing the *Owner*'s operation of the work.
- 7. Condition 7 is included to provide a performance record for future references, to ensure that the *Ministry* is made aware of problems as they arise, and to provide a compliance record for all the terms and conditions outlined in this *Certificate*, so that the *Ministry* can work with the *Owner* in resolving any problems in a timely manner.
- 8. Condition 8 is included to require a contingency plan be in place and a trigger mechanism be developed to ensure that the Reasonable Use requirements are met and any significant impacts to the surface water are mitigated.

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 3-0436-99-006 issued on June 11, 1999.

In accordance with Section 100 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary* Environmental Review Tribunal 2300 Yonge St., 12th Floor P.O. Box 2382 Toronto, Ontario M4P 1E4

<u>AND</u>

The Director Section 53, Ontario Water Resources Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from

Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 23rd day of December, 2003

THIS CERTIFICATE WAS MAILED ON (Signed)

Mohamed Dhalla, P.Eng.

Director

Section 53, Ontario Water Resources Act

FL/

District Manager, MOE Cornwall c:

Carolyn VanDelst, Golder Associates Ltd.

Drinking Water and Wastewater Section, MOE Standards Development Branch

APPENDIX B RECORD OF BOREHOLE SHEETS

LIST OF ABBREVIATIONS

The abbreviations commonly employed on Records of Boreholes, on figures and in the text of the report are as follows:

		•		•
I.	SAMPLE TYPE	III.	SOIL DESCRIPTION	
AS	Auger sample		(s)	Cohesionless Soils
BS	Block sample			
CS	Chunk sample	Density Inc	dex	N
DO	Drive open	(Relative D	ensity)	Blows/300 mm
DS	Denison type sample			Or Blows/ft.
FS	Foil sample	Very loose		0 to 4
RC	Rock core	Loose		4 to 10
SC	Soil core	Compact		10 to 30
ST	Slotted tube	Dense		30 to 50
TO	Thin-walled, open	Very dense	•	over 50
TP	Thin-walled, piston			310130
WS	Wash sample		(b)	Cohesive Soils
		Consistenc		C _{n2} S _n
II.	PENETRATION RESISTANCE	00110110110	Kpa	Psf
		Very soft	0 to 12	0 to 250
Standar	d Penetration Resistance (SPT), N:	Soft	12 to 25	250 to 500
	The number of blows by a 63.5 kg. (140 lb.)	Firm	25 to 50	500 to 1,000
	hammer dropped 760 mm (30 in.) required	Stiff	50 to 100	1,000 to 2,000
	to drive a 50 mm (2 in.) drive open	Very stiff	100 to 200	2,000 to 4,000
	Sampler for a distance of 300 mm (12 in.)	Hard	Over 200	Over 4,000
Dynami	ic Penetration Resistance; N _d :	IV.	SOIL TESTS	
	The number of blows by a 63.5 kg (140 lb.)			
	hammer dropped 760 mm (30 in.) to drive	w	water content	
	Uncased a 50 mm (2 in.) diameter, 60° cone	$\mathbf{w_p}$	plastic limited	•
	attached to "A" size drill rods for a distance	w _I	liquid limit	
	of 300 mm (12 in.).	C-	consolidation (oedometer)	
		CHEM	chemical analysis (refer to	
PH:	Sampler advanced by hydraulic pressure	CID	consolidated isotropically	
PM:	Sampler advanced by manual pressure	CIU	consolidated isotropically	
WH:	Sampler advanced by static weight of hammer	_	with porewater pressure m	
WR:	Sampler advanced by weight of sampler and	$\mathbf{D}_{\mathbf{R}}$	relative density (specific g	ravity, G _s)
	rod	DS	direct shear test	•
		M	sieve analysis for particle s	
Peizo-C	Cone Penetration Test (CPT):	MH	combined sieve and hydro	
	An electronic cone penetrometer with	MPC	modified Proctor compact	
	a 60° conical tip and a projected end area	SPC	standard Proctor compacti	on test
	of 10 cm ² pushed through ground	OC	organic content test	
	at a penetration rate of 2 cm/s. Measurements	SO₄	concentration of water-sol	
	of tip resistance (Q ₁), porewater pressure	UC	unconfined compression to	
	(PWP) and friction along a sleeve are recorded	ឃ	unconsolidated undrained	
	Electronically at 25 mm penetration intervals.	V	field vane test (LV-laborat	ory vane test)
	•	Υ	unit weight	
	•			

Note:

1. Tests which are anisotropically consolidated prior shear are shown as CAD, CAU.

LIST OF SYMBOLS

Unless otherwise stated, the symbols employed in the report are as follows:

1.	GENERAL		(a) Index Properties (cont'd.)
π	= 3.1416	w	water content
ln x, natural lo	garithm of x	$\mathbf{w_1}$	liquid limit
	logarithm of x to base 10	$W_{\mathbf{p}}$	plastic limit
g	Acceleration due to gravity	l_p	plasticity Index=(w ₁ -w _p)
t	time	-p -W _s	shrinkage limit
F	factor of safety	I _L	liquidity index=(w-w _p)/I _p
v	volume	I _c	consistency index=(w ₁ -w)/I _p
w	weight		void ratio in loosest state
**	weight	C _{max}	void ratio in densest state
II.	STRESS AND STRAIN	e _{rmin} I _D	density index-(e _{max} -e)/(e _{max} -e _{min})
	SIRESS AND SIRAIN	- 1 D	(formerly relative density)
γ	shear strain		(formerly felative delisity)
Δ	change in, e.g. in stress: Δ σ'		(b) Hydraulic Properties
· E	linear strain	٠	(b) Mydradic i operaco
	volumetric strain	h	hydraulic head or potential
E,			rate of flow
η	coefficient of viscosity	q	
ν	Poisson's ratio	V	velocity of flow
σ	total stress	1	hydraulic gradient
ď	effective stress ($\sigma' = \sigma''-u$)	k	hydraulic conductivity (coefficient of permeability)
്യം	initial effective overburden stress	j	seepage force per unit volume
$\sigma_1 \sigma_2 \sigma_3$	principal stresses (major, intermediate, minor)		(c) Consolidation (one-dimensional)
σ _{oct}	mean stress or octahedral stress		
-	$= (\sigma_1 + \sigma_2 + \sigma_3)/3$	C _c	compression index (normally consolidated range)
τ	shear stress	C,	recompression index (overconsolidated range)
u	porewater pressure	Č,	swelling index
Ē	modulus of deformation	C,	coefficient of secondary consolidation
Ğ	shear modulus of deformation	m _v	coefficient of volume change
ĸ	bulk modulus of compressibility	C _v	coefficient of consolidation
	outh modulus of complessionity	T _v	time factor (vertical direction)
III.	SOIL PROPERTIES	ับ	degree of consolidation
222.	SOIL I NOI ERITES		pre-consolidation pressure
	(a) Index Properties	o", OCR	Overconsolidation ratio= $\sigma'_{\nu}/\sigma'_{\nu_0}$
	(a) Index 1 topesties	OCK	Overconsolidation fatto-0 p/0 vo
ρ(γ)	bulk density (bulk unit weight*)		(d) Shear Strength
Pa(Ya)	dry density (dry unit weight)		
$\rho_{\mathbf{w}}(\gamma_{\mathbf{w}})$	density (unit weight) of water	$\tau_p \tau_r$	peak and residual shear strength
$\rho_s(\gamma_s)$	density (unit weight) of solid particles	φ'	effective angle of internal friction
γ	unit weight of submerged soil $(\gamma'=\gamma-\gamma_w)$	δ	angle of interface friction
D_R	relative density (specific gravity) of	μ	coefficient of friction=tan δ
· ·	solid particles $(D_R = p_s/p_w)$ formerly (G_s)	c'	effective cohesion
e.	void ratio	Cu,Su	undrained shear strength (\$\display=0\$ analysis)
n	porosity		mean total stress $(\sigma_1+\sigma_3)/2$
S	degree of saturation	p p'	mean effective stress $(\sigma'_1+\sigma'_3)/2$
	aograe or saturation		· · · · · · · · · · · · · · · · · · ·
•	Density number in a Time of the	q	$(\sigma_1-\sigma_3)/2$ or $(\sigma'_1-\sigma_3)/2$
▼	Density symbol is p. Unit weight	q _u	compressive strength $(\sigma_1 - \sigma_3)$
	symbol is γ where γ-pg(i.e. mass	St	sensitivity
	density x acceleration due to gravity)		
			Notes: 1. τ=c'o' tan []'
			2. Shear strength=(Compressive strength)/2

RECORD OF BOREHOLE: MW 99-1

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 3, 2000

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

,	윉	-	SOIL PROFILE	- I		SA	MPL				BLOWS) (HYDRA				Ī	Ag.	PIEZOMETER
METRES	BORING METHOD		DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR Cu, kPa	STREN			0 · 0		TER CO	MTENT	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
4	8	╅	· · · · · · · · · · · · · · · · · · ·	STR	(m)	Ž	Ц	BL	20		10 E	0 .	10	10				40 1	,3	
아	T		Ground Surface TOPSOIL		53.48 0.00		Н	_	├──┤		├─-		\vdash					 -	-	P2 P
					53.18					•										Native Backfill
			Brown medium SAND		0.30								,							Bentonite Seal
			Loose brown very fine SAND	No. No. No.	52.57 0.91	,														Native Beckfill
1				ke ke ke ke	0, 0, 0															Bentonite Seal
			Loose grey SILTY SAND, laminated with clay interbeds		51.8c		80	5												∡
2	Power Auger	Omm Dlam, Hollow Stem		*****																Native Backfill
3		500		***																↓. Native Backfill
						2	50	2							-					
									-											
				6																38mm PVC #10 Slot Screen
5			END OF BOREHOLE	f	43	91														W.L.in Screen at Elev. 51.76m Aug. 10/00
	EP1		SCALE	1		L				G	colde	<u> </u>		<u> </u>	<u></u>	<u></u>	<u> </u>	1	Щ,	OGGED: JFB

MW 99-2 **RECORD OF BOREHOLE:**

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: See Site Plan SAMPLER HAMMER, 64kg; DROP, 760mm BORING DATE: August 3, 2000

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Some Part Section	ļ	3 ME			P.C	ELEV.	E		/0.3m	20					10		 <u> </u>	10* -	TEST	OR STANDPIPI
Consect Services S	١	SHIP	1	DESCRIPTION	HATA	DEPTH	NCMB	TYPE	OWS	Cu, kPa	STHENG	וו HII	at v. + em v. ⊕	U- 0					88	INSTALLATIO
TOPSOIL Loose prey SILTY SAND, with day 1.00 s 1.00	ļ	-	╁		ST			Н	8	20 1	40	6	0 8	0	10) 2		<u>40</u>	├	
Loose prey BILTY SAND, with day Loose grey BILTY SAND, with day	ŀ	Т						Н	-	\vdash	-+				\vdash		 	+	\vdash	
Loose grey SILTY SAND, with clay 1 as a so			-	Loose brown very fine SAND, trace silt																Native Backfill Bentonite Seal
Loces gray SiLTY SAND, with clay interbuds 1																				Native Backfill
Loose gray SILTY SAND, with clay intertocks 1 80 5 Native Backf 2 50 4 38mm PVC at 0 Sixt Screen Granular Fills END OF BOREHOLE 4.57					No. No. No.															Bentonite Seal
2 50 4 38mm PVC e10 Stot Screen 3 50 2 END OF BOREHOLE 4.57 W.L.in Screen ENV. 51 27m	2	,	.	Loose grey SILTY SAND, with clay interbeds		51.3 1.8	8	50 DO	5											፟፟፟፟፟፟፟
3 50 2 END OF BOREHOLE 4.57 W.I. in Screen W.I. in Screen W.I. in Screen W.I. in Screen Elev. 51 27m		Power Auger	200mm Diem. Hollow She								-									Ų. Native Backfill
3 50 2 END OF BOREHOLE 4.57 W.I. in Screen W.I. in Screen W.I. in Screen W.I. in Screen Elev. 51 27m	3				***		-													
3 50 2 END OF BOREHOLE 4.57 W.i.in Screen Elev. 51.27m							2	50 DC	4											38mm PVC #10 Slot Screen
END OF BOREHOLE 4.57 W.I. in Scree Flev. 51.27m	4						3	50 DX	2											Granular Fitter
Aug. 10/00				END OF BOREHOLE																W.L.in Screen at Elev. 51.27m Aug. 10/00

DEPTH SCALE

1 : 25

CHECKED: JFB

PENETRATION TEST HAMMER, 64kg; DROP, 760mm PIEZOMETER OR STANDPIPE INSTALLATION DATUM: Geodetic D W.L.in Screen at Elev. 51.26m Aug. 10/00 Native Backfill SHEET 1 OF CHECKED: JFB 38mm PVC #10 Slot Screen ADDITIONAL LAB. TESTING WATER CONTENT PERCENT Σ HYDRAUUC CONDUCTIVITY, k, cm/s MW 99-3 nat V. + Q. ● BORING DATE: August 3, 2000 RECORD OF BOREHOLE: DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m Golder Associates 8-20 40 SHEAR STRENGTH Cu, KPa SAMPLES BLOWS/0.3m • • ~ 34YT 88 88 88 NUMBER -ELEV. DEPTH (m) TOJA ATARTS SOIL PROFILE Loose grey SILTY SAND, with clay interbeds SAMPLER HAMMER, 64kg; DROP, 780mm DESCRIPTION END OF BOREHOLE LOCATION: See Site Plan PROJECT: 001-2772 Ground Sur TOPSOIL DEPTH SCALE 200mm Diam. Hollow Stem BOHING METHOD Power Auger 1 : 25 DEPTH SCALE
METRES 0 BOREHOLE 001-2772, GPJ HYDROGEO. GDT 3 19 01

RECORD OF BOREHOLE: MW 99-4

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 3, 2000

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

Т	8	T	SOIL PROFILE			SAI	MPL	ES	DYNA	MC PEN	ETRATI	ON /0.3m	Υ.	HYDRA	AULIC C	ONDUCT	IVITY,	T		
METRES	BORING METHOD	Γ		ğ				Jm.					0	10			04 1	10° T	ADDITIONAL LAB. TESTING	PIEZOMETER OR
퇼	E S	١	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEA! Cu, kP	R STREI	I GTH	nat V. + rem V. •	Q - O			ONTENT			MB. TE	STANDPIPE INSTALLATION
	8			STR	(m)	Ž		BLO					ю		0 2			W1 40	,,	
•		1	Ground Surface		52.91															
	İ	1	TOPSOIL		0.00						ļ						1			8
		ŀ	Loose brown very fine SAND, laminated		52.70 0.21													1		Native Backfill
-		-					İ							Ì			ŀ		1	
ļ		1			}		Ì							İ			Ì			Bentonite Seal
۱		١			}												İ			
		I		6	\$															Native Backfill
		1			4															8
٠		ł			\$											1				
		1		15	4					ļ]				
					4		ļ]	Ì	}				Bentonite Seal
					4											1		1		
					\$	\vdash	1							1						
								İ										1	1	
					.]	١,	50 DO	3					ŀ							
	$\ \ $			300			ľ													
Z	li	6				l				-		1		İ						
	ı	3			.]		1							1						
	Posser	Dem.												1						Native Backfill
	֡֜֟֜֟֟֟֟֡֡֡֡֡֡֡֡֡	200mm Diam. Ho	·									1		1						Native Backfill
		75		فبير																
			Loose grey SILTY SAND, with clay		50.1			1												
	П		interbeds		2.7	1			}					1		1				📳
3	П						l													📳
							1							ŀ						
	H										'							•	1	
	П	ľ				2	50 D0	3 4					l						1.5	
											'							'		Screen
						L										1				
																-				#10 Slot Screen
	l					1	١													
4						卜	1									1		1		1
						ŀ					}									l
				Į.	ll I	3	50 DX	2												Granular Filter
									1			1								
	L			1	48.3			\perp										<u>L</u>		
			END OF BOREHOLE		4.5	7														W.L.in Screen at
																				Elev. 48.96m Aug. 10/00
									1	1										
5					İ															
	<u></u>	_				1	1_	1.			1		<u>. </u>	1	Щ			Ь	1	<u> </u>
			SCALE							G	olde	r ates							U	OGGED: JFB
1	: 2	5							V	As	soci	ates					٠.		CH	IECKED: MU

RECORD OF BOREHOLE: MW 99-5

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: August 8, 2000

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	ЕТНОВ	SOIL PROFILE	Τ'n	Γ	\vdash	MPLI	1	DYNAMIC PER RESISTANCE				i	AUUC C k, cm/s			. T	NG A	PIEZOMETER
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	20 SHEAR STRE Cu, kPa	40 NGTH	nat V. rem V.	#ο Φυ-Ο	w	ATER C	ONTENT	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
\downarrow	8		STR	(m)	Ž		a		40	60	80		0 2			W1 40	~ 5	
。├	т-	Ground Surface TOPSOIL	===	51.50 0.00	Ļ	Н	Ц		┼-	-	 	<u> </u>						
		TOT SOIL																Native Backfill
		Loose brown very fine SAND		51,10 0.40										:				Bentonite Seal
			X1.5 X															Native Backfill
·			18.00	4														Bentonite Seal
																		Native Backfilil
			No. of										·					3000000
2			6 366 366	0, 00, 0		50 DO	•					·						Native Backfill
	Diem Hollow Ste		The state of	20,50,5	-													立
ľ	SOmm Di	Loose grey SILTY SAND, with clay interbeds		48.9 2.5														Native Backfill
				***														Granular Filter
3			*****															
					2	50 DO	1											38mm PVC #10 Slot Screen
			*****			1												38mm PVC #10 Slot Screen
1			***															Granular Filter
		e e			3	50 D0	4			e								THE STATE OF THE S
	1	END OF BOREHOLE	E	46.9	7	+									-	-		W.L.in Screen at Elev. 49.31m
5													,					Aug. 10/00
	PTH 25	SCALE						P AS		er		1	1	,	<u> </u>	<u> </u>		OGGED: JFB

RECORD OF BOREHOLE: MW 99-6

SHEET 1 OF 1

LOCATION: See Site Plan

BORING DATE: August 3, 2000

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	5	SOIL PROFILE	 -	T	SA	MPL	-		ANCE, E)		LULIC CC k, cm/s			I	¥.¥	PIEZOMETER
	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	BLOWS/0.3m	SHEAR Cu, kPa	STREN			0		ATER CO	MTENT	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
+	đ		ES.	(m)	Н	Ц	<u>8</u>	2) 40	9	0 8	0	10				40		
┝	Т	Ground Surface Sand (FILL)	 	52.86 0.00		H	H									<u> </u>	₩	 	
		TOPSOIL		52.71 0.15					. [į									
İ	ı	1010012																	
				52.40							,				-	·			Concrete
١	1	Loose brown very fine SAND, some silt		0.46															
				\$															
	l			4															Granular Filler .
1				4		1													
1				4															
				51.84	Ĺ						•								
		Loose grey SILTY fine SAND, with clay interbeds	Ň																Bentonite Seal
1				1															
				1	\vdash	1											1	1	℧
1	1			1			1												
					١,	50 DO	5											-	8
				4		~				10									Native Backfill
۲ ۲				i i		1													
	١			1		1.	1												Native Backfill
1	1			1													1		
	1			1															[
					1		١.											.	38mm PVC #10 Slot
														4.4			}]	Screen
3																		1	38mm PVC #10 Slot Screen
			1		T	1												[
ļ				ll .							-		1]]	
	1				2	50 DC	2												
						-											1		Granular Filter
			H	ļ.	L														Granular Filter
	1	END OF BODELICE	ĮĬ,		5	\perp	L	<u> </u>											
		END OF BOREHOLE		3.6	"														
1						1													W.L.in Screen at
					1			1											W.L.in Screen at Elev. 51.36m Aug. 10/00
				1															
									1										
																	1		
5																			
			1					1	1					'			1		

DEPTH SCALE

1:25

LOGGED: JFB
CHECKED: M.

LOCATION: See Site Plan

RECORD OF BOREHOLE: MW 99-7

BORING DATE: August 4, 2000

SHEET 1 OF 1

DATUM: Geodetic

SAMPLER HAMMER, 64kg; DROP, 760mm

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

ES	ETHO	SOIL PROFILE	Гъ	Γ	SA	MPL	_	DYNAMIC PER RESISTANCE) _ `				TIVITY,		독	PIEZOMETER
METHES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH	NUMBER	TYPE	BLOWS/0.3m	SHEAR STREE Cu, kPa			Q. ● U- O		ATER C	ONTENT	PERCE		ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
+	<u> </u>		STF	(m)	_	Ц	BEC				0	- 10	0 2			WI 40	35	
ᆘ	Т	TOPSOIL		53.36 0.00	-	Н	Н		├	-		-		L	ļ			
		Loose brown very fine SAND		53.21 0.15				į.										Native Backfill
			C. No. No. No.								-	-						Bentonite Seal
1		Loose grey SILTY fine SAND, laminated with clay interbeds		52,45 0.91														Native Backfill
			4 4 4										-					Bentonite Seal⊈
2	200mm Diam, Hollow Stem	e.	4. 4. 4. 4		1	88	4							:	-			Native Backfill
			***													-		l M⊟
3												-			-		l. 1	38mm PVC #10 Slot Screen
			***		2	88	3											Granular Filter
-		END OF BOREHOLE		40.55 3.81	-													
4																	1	W.L.in Screen at Elev. 52.09m Aug. 10/00
5															-			
5								G									1	Elev. 52.09m

1 : 25

Golder Associates

CHECKED: MW

RECORD OF BOREHOLE: MW 99-8

SHEET 1 OF 1

DATUM: Geodetic

LOCATION: See Site Plan

SAMPLER HAMMER, 64kg; DROP, 760mm

BORING DATE: August 8, 2000

PENETRATION TEST HAMMER, 64kg; DROP, 760mm

	£	ŀ	SOIL PROFILE	15	1		MPLI		DYNAI RESIS		, BLOW 40	60 60	km . 80		10	k, cm/s		04	10° I	NAL	PIEZOMETE OR
	BORING METHOD	١	DESCRIPTION	STRATA PLOT	ELEV.	NUMBER	TYPE	80.3	SHEA!	r .	•			Q. ● U- O		ATER C				ADDITIONAL LAB. TESTING	STANDPIPI INSTALLATIO
	Š	١	DESCRIPTION	HAT.	DEPTH (m)	NOM	Σ.	Š	Cu, kP			rem	V. ⊕	U-O	W		—ФЖ		ł WI	28	INSTALLATIO
_	-	+		18	-	-	ш	-	3	0	40	60	80 	<u> </u>	1	0 <u>2</u>	0	30 1	40	┢	
-	Τ		Ground Surface Fine sand (FILL)	***	47.72 0.00	-	H			_	+	+	\dashv				<u> </u>	┢	+		Native Backfill
	ı	۱																ļ		ł	LAGRAG DRICKIN
				₩																	Bentonite Seal
		١																			DOS NOTING SEAL
		ļ	PEAT	_₩	47.20 0.52						٠.	1					ļ				Granular Filter
	١	1	PERI		3	l						-				•			1	ł	
		t	TOPSOIL		47.01 46.93	1														1	
			Loose very fine brown SAND		0.75					'		۱									Bentonite Seal
	l	l			.]															1	
	١	١		2	1	1			Ì		•					ļ	1				
	Į	ł				1	١			1	1				1	1					
	١			2	4						1		٠.,								
	١	١				L	1													1	•
		١				l									l				.		
	۱	ı	Grey SILTY CLAY, with sand seams	20	45.9 1.7	7	_		ļ			-			ļ						
	١	١	•			1	50 00	2	•									ļ		1:	
		_				İ		ŀ													Native Backfill
		8	•			H	-	1								1		İ			
l	Ì	분					Ì										-				1
l	Ĭ	Ğ				١													1		٠,
l		200g													1	1	1				
l			5. 6. 5. 5.				1					-							-		□ ∇
ı										1											Native Backfill
I	1				Ø			1							1 .	1					
ŀ	-		**			L		Ì	1									1			Granular Filter
۱			e e e e e e e e e e e e e e e e e e e			1		-												ļ	
					8			1							1						٠.
l						ľ	50 D0	3 2										1.			1 · · · · · · · ·
I			,																		
I				1	8	L	4		1					1.5					1		
I						ı													1		38mm PVC #10 Slot
l	1		·	1											1						Screen
							1														
						3	S	2				.							İ		
																		-			
		L		1	43	15					\perp			L							
			END OF BOREHOLE	T	1		T	T													WI in Compa
																					W.L.in Screen at Elev. 45.04m Aug. 10/00
			·																		-wg. 10/00
				1											1	1		1.			
١						\perp	\perp	\perp													

1:25

Golder Associates

LOGGED: JFB CHECKED: MM

APPENDIX C

GROUNDWATER CHEMICAL ANALYSES DATA

Golder Associates

Project: 051120733

Sample Source: MW 99-1						Sheet: 1
Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000	10-Nov-2000	11-Dec-2000
Parameter	ODWQS					
Ammonia (as N)		0.17	0.18	0.08	0.09	Frozen
Bromide		<0.05	<0.05	<0.05	<0.05	
Chloride	250	12.0	11.0	7.0	6.0	
Conductivity (uS/cm)		448	441	420	280	
DOC	5	3.5	2.6	2.4	2.1	
Escherichia coli (per 100mL)	0	<10	0	0	0	
Fluoride	1.5	<0.10	0.11	0.11	0.11	
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.7	7.1	7.9	7.7	
Phosphorus (total)						
Sulphate	500	41.0	43.0	44.0	47.0	
Temperature (C)	15		11.0		6.0	
TKN		2.74	0.33	0.21	0.24	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

	Sample Source: MW 99-1						Sheet: 2
	Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001
_	Parameter	ODWQS	<u> </u>				
	Ammonia (as N)		Frozen	0.04	0.10	<0.02	0.12
	Bromide			<0.05	<0.05	<0.05	<0.05
	Chloride	250		3.0	5.0	5.0	6.0
	Conductivity (uS/cm)			325	285	330	300
	DOC	5		2.3	1.5	1.2	1.9
	Escherichia coli (per 100mL)	0		0	<10	<10	<10
	Fluoride "	1.5		<0.10	0.10	0.11	0.11
	Nitrate (as N)	10		0.45	0.17	<0.10	0.19
	Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10
	pH (pH units)	6.5-8.5		7.7	7.2	6.8	7.9
	Phosphorus (total)						
	Sulphate	500		36.0	37.0	32.0	35.0
	Temperature (C)	15		6.0	6.0	5.5	7.5
	TKN	*		0.21	0.21	0.17	0.15

Golder Associates

Project: 051120733

Sample Source: MW 99-1						Sheet: 3
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001
Parameter	ODWQS	·				
Ammonia (as N)		0.04	0.10	0.05	0.07	0.12
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05
Chloride	250	6.0	7.0	12.0	18.0	44.0
Conductivity (uS/cm)		345	335	330	470	255
DOC	5	1.5	1.6	1.3	1.1	0.8
Escherichia coli (per 100mL)	0	<10	<10	0	<10	0
Fluoride	1.5	0.13	0.12	0.15	0.14	0.13
Nitrate (as N)	10	0.19	0.22	0.12	0.20	0.25
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	7.5	6.2	7.4	7.4	6.7
Phosphorus (total)						0.,
Sulphate	500	32.0	27.0	31.0	28.0	25.0
Temperature (C)	15	8.0	7.5	12.0	8.0	10.0
TKN		0.11	0.13	0.22	0.20	0.21

Golder Associates

Sample Source: MW 99-1						Sheet: 4	
Date Sampled:		13-Nov-2001 18-Dec-2001	24-Jan-2002	13-Feb-2002	15-Mar-2002		
Parameter	ODWQS						
Ammonia (as N)		0.09	0.10	0.25	0.16	0.09	
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05	
Chloride	250	116.0	218.0	296.0	312.0	332.0	
Conductivity (uS/cm)		540	790	1175	1200	1100	
DOC	5	0.9	1.4	1.9	1.7	2.3	
Escherichia coli (per 100mL)	Ó	0	0	0	0	0	
Fluoride	1.5	0.51	0.13	0.49	0.61	0.59	
Nitrate (as N)	10	0.75	4.38	7.85	11.80	11.60	
Nitrite (as N)	1	<0.10	<0.10	1.36	0.66	2.02	
pH (pH units)	6.5-8.5	7.5	7.2	7.7	7.5	8.0	
Phosphorus (total)							
Sulphate	500	27.0	29.0	40.0	43.0	49.0	
Temperature (C)	15	8.0	7.0	7.0	5.0	5.0	
TKN		0.31	0.11	0.34	0.33	0.14	

Golder Associates

Project: 051120733

Sample Source: MW 99-1						Sheet: 5
Date Sampled:		18-Apr-2002	15-May-2002	25-Jun-2002	23-Jul-2002	19-Aug-2002
Parameter	ODWQS	·				
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sulphate Temperature (C) TKN	250 5 0 1.5 10 1 6.5-8.5 500	0.10 <0.05 326.0 1200 1.8 0 0.49 11.50 2.05 7.8 53.0 8.5 0.32	0.16 <0.05 304.0 1400 3.2 0 0.50 14.90 1.47 6.8 57.0 10.0 0.74	0.07 <0.05 301.0 1300 2.1 0 0.13 16.20 1.45 7.7 59.0 10.0 0.31	0.07 <0.05 289.0 1400 2.6 0 0.10 23.70 2.32 7.6 59.0 12.0 0.30	0.05 <0.05 321.0 1600 2.6 0 0.14 22.10 1.44 7.5 64.0 13.0 0.39

Golder Associates

Project: 051120733

Sample Source: MW 99-1						Sheet: 6	
Date Sampled:		26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003	
Parameter	ODWQS						
Ammonia (as N)		0.07	0.10	0.10	0.07	0.08	
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05	
Chloride	250	280.0	289.0	280.0	304.0	291.0	
Conductivity (uS/cm)	200	1200	1000	1100	1100		
DOC DOC	5	1.9	2.2	3.4	2.7	2.7	
Escherichia coli (per 100mL)	Ö	0	0	0	0	<10	
Fluoride	1.5	0.10	<0.10	<0.10	<0.10	0.39	
Nitrate (as N)	10	16.40	17.80	18.20	20.40	19.30	
Nitrite (as N)	1	1.91	1.11	<0.10	1.68	2.77	
pH (pH units)	6.5-8.5	7.6	7.9	8.0	8.0	8.1	
Phosphorus (total)	0.0 0.0						
Sulphate	500	67.0	68.0	73.0	74.0	73.0	
Temperature (C)	15	12.5	12.0	8.0	8.0	7.0	
TKN	, ,	0.39	0.36	0.52	0.46	0.40	

Golder Associates

Project: 051120733

Sample Source: MW 99-1						
Date Sampled:		02-Mar-2003	27-Mar-2003	25-Apr-2003	26-May-2003	26-May-2003(2)
Parameter	ODWQS					
Ammonia (as N)		0.10	0.05	0.09	0.08	0.10
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05
Chloride	250	297.0	288.0	279.0	274.0	278.0
Conductivity (uS/cm)		1400	1200	1260	1050	, =: 0.0
DOC	5	3.1	3.5	2.7	2.9	3.0
Escherichia coli (per 100mL)	0	0	0	0	0	0
Fluoride	1.5	0.43	0.48	<0.10	0.10	0.11
Nitrate (as N)	10	18.60	23.40	21.00	17.20	****
Nitrite (as N)	1	3.48	2.14	1.83	0.49	0.49
pH (pH units)	6.5-8.5	7.1	8.1	7.8	7.8	
			2.930			
	500	72.0	69.0	69.0	69.0	69.0
•	15	7.0	6.0	7.0	7.4	
TKN		0.49	0.37	0.39	0.44	0.46
Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sulphate Temperature (C)	1.5 10 1 6.5-8.5	0.43 18.60 3.48 7.1 72.0 7.0	0.48 23.40 2.14 8.1 2.930 69.0 6.0	<0.10 21.00 1.83 7.8 69.0 7.0	0.10 17.20 0.49 7.8 69.0 7.4	0.11 21.00 0.49 69.0

Golder Associates

Project: 051120733

Sample Source: MW 99-1						Sheet: 8	
Date Sampled:		27-Jun-2003	25-Jul-2003	27-Aug-2003	18-Sep-2003	18-Sep-2003(2)	
Parameter	ODWQS	· · · · · · · · · · · · · · · · · · ·				· · ·	
Ammonia (as N)		0.04	0.06	0.03	<0.02	<0.02	
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05	
Chloride	250	268.0	310.0	337.0	345.0	365.0	
Conductivity (uS/cm)		1400	1590	1600 ·	1600	•	
DOC	5	2.8	2.6	2.9	2.8	2.8	
Escherichia coli (per 100mL)	0	0	<10	<10	<10	<10	
Fluoride	1.5	0.11	0.33	0.10	0.98	0.35	
Nitrate (as N)	10	22.10	20.00	17.10	21.80	23.50	
Nitrite (as N)	1	<0.10	1.68	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	8.1	7.8	7.8	8.0		
Phosphorus (total)							
Sulphate	500	67.0	71.0	69.0	91.0	74.0	
Temperature (C)	15	9.6		16.1	13.7		
TKN	· -	0.36	0.41	0.38	0.44	0.40	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-1						Sheet: 9	
Date Sampled:		24-Oct-2003	18-Nov-2003	18-Nov-2003(2) 11-Dec-2003	25-Mar-2004	
Parameter	ODWQS						
Ammonia (as N)		0.12	0.05	0.10	0.03	<0.03	
Bromide		0.14	<0.05	<0.05	<0.05	<0.50	
Chloride	250	309.0	330.0	330.0	326.0	275.0	
Conductivity (uS/cm)		1400	1510		1400	1460	
DOC	5	2.1	2.8	2.2	2.6	4.2	
Escherichia coli (per 100mL)	0	0	0	0	0	<10	
Fluoride "	1.5	0.54	0.73	0.98	0.17	<0.10	
Nitrate (as N)	10	13.90	18.00	18.40	21.90	19.90	
Nitrite (as N)	1	0.22	0.25	0.30	1.17	<0.20	
pH (pH units)	6.5-8.5	7.5	7.6		6.7	7.8	
Phosphorus (total)						1.0	
Sulphate	500	78.0	88.0	89.0	71.0	73.6	
Temperature (C)	15	10.4	9.1	'	8.2	5.7	
TKN	•-	0.34	0.41	0.45	0.43	0.27	
					· -		

Golder Associates

Project: 051120733

Sample Source: MW 99-1						Sheet: 10
Date Sampled:		01-Jun-2004	01-Jun-2004(2)	26-Aug-2004	26-Aug-2004(2)	19-Oct-2004
Parameter	ODWQS					
Ammonia (as N)		<0.03	<0.03	0.03	0.09	0.06
Bromide		<0.50	<0.50	<0.50	<0.50	<0.50
Chloride	250	264.0	273.0	287.0	304.0	334.0
Conductivity (uS/cm)		1050		1200		1330
DOC	5	3.0	2.7	4.0	3.7	4.2
Escherichia coli (per 100mL)	0					0
Fluoride	1.5	<0.10	<0.10	<0.10	<0.10	0.10
Nitrate (as N)	10	13.40	13.90	20.40	22.70	21.40
Nitrite (as N)	1	<0.20	<0.20	<0.20	<0.20	<0.20
pH (pH units)	6.5-8.5	7.5		7.0		7.6
Phosphorus (total)			100			
Sulphate	500	68.7	69.2	63.1	63.0	72.9
Temperature (C)	15	7.3		12.0		12.2
TKN		0.41	0.30	0.33	0.33	0.34

All values reported in mg/L unless otherwise noted.

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

	Sample Source: MW 99-1						Sheet: 11
	Date Sampled:		17-Mar-2005	09-Jun-2005	02-Aug-2005	02-Aug-2005(2	?) 21-Oct-2005
_	Parameter	ODWQS					
	Ammonia (as N)		0.02	0.05	0.04	0.09	0.08
	Bromide		<0.05	0.16	<0.05	<0.05	<0.05
	Chloride	250	282.0	313.0	365.0	367.0	317.0
	Conductivity (uS/cm)		1650	1590	960		1500
	DOC	5	3.4	3.5	3.0	3.8	2.7
	Escherichia coli (per 100mL)	. 0	0	<10	<10	<10	<10
	Fluoride	1.5	0.13	0.10	<0.10	<0.10	0.15
	Nitrate (as N)	10	14.80	29.60	24.10	25.40	19.00
	Nitrite (as N)	1	0.57	<0.10	0.27	0.31	<0.10
	pH (pH units)	6.5-8.5	7.6	7.4	7.7		7.8
	Phosphorus (total)						
	Sulphate	500	78.0	59.0	70.0	70.0	67.0
	Temperature (C)	15	5.3	12.0	13.0		11.0
	TKN'		0.43	0.47	0.46	0.50	0.42

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-1

Sheet: 12

D 4.	A		
Date	San	ibiea:	

21-Oct-2005(2)

Parameter	ODWQS	
Ammonia (as N)		0.08
Bromide		<0.05
Chloride	250	320.0
Conductivity (uS/cm)		
DOC	5	3.1
Escherichia coli (per 100mL)	0	<10
Fluoride	1.5	0.14
Nitrate (as N)	10	21.80
Nitrite (as N)	1	<0.10
pH (pH units)	6.5-8.5	7.9
Phosphorus (total)		
Sulphate	500	62.0
Temperature (C)	15	
TKN	'	0.45

Golder Associates

Project: 051120733

	Sample Source: MW 99-2					10-Nov-2000	Sheet: 1 11-Dec-2000	
	Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000			
_	Parameter	ODWQS						
	Ammonia (as N)		0.23	0.26	0.14	0.16	Frozen	
	Bromide		<0.05	<0.05	<0.05	< 0.05		
	Chloride	250	8.0	16.0	5.0	4.0		
	Conductivity (uS/cm)		340	359	305	230		
	DOC	5	3.7	2.4	2.4	1.8		
	Escherichia coli (per 100mL)	0	<10	0	0	0		
	Fluoride	1.5	0.12	0.13	0.13	0.12		
	Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10		
	Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10		
	pH (pH units)	6.5-8.5	7.8	7.4	7.9	7.7		
	Phosphorus (total)							
	Sulphate	500	28.0	25.0	24.0	26.0		
	Temperature (C)	15		11.0		6.0		
	TKN		2.48	0.41	0.19	0.31		
			-					

Golder Associates

Project: 051120733

	Sample Source: MW 99-2						Sheet: 2
	Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001
_	Parameter	ODWQS					
	Ammonia (as N)		Frozen	0.16	0.11	0.02	0.12
	Bromide `			0.15	<0.05	<0.05	<0.05
	Chloride	250		35.0	6.0	3.0	3.0
	Conductivity (uS/cm)			440	325	245	230
	DOC	5		2.3	1.4	1.3	1.6
	Escherichia coli (per 100mL)	Ó		0	<10	<10	<10
	Fluoride	1.5		0.11	0.10	0.12	0.12
	Nitrate (as N)	10		0.30	0.13	<0.10	0.12
	Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10
	pH (pH units)	6.5-8.5		7.8	7.1	7.1	7.1
	Phosphorus (total)						
	Sulphate	500		31.0	36.0	22.0	23.0
	Temperature (C)	15		6.0	5.5	6.0	7.0
	TKN			0.29	0.25	0.09	0.18

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS Project: 051120733

Sample Source: MW 99-2						Sheet: 3
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001
Parameter	ODWQS				·	·
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sulphate Temperature (C)	250 5 0 1.5 10 1 6.5-8.5	0.08 <0.05 3.0 265 1.8 <10 0.12 0.13 <0.10 7.9	0.13 <0.05 4.0 255 1.9 <10 0.13 <0.10 <0.10 6.0	0.06 <0.05 4.0 280 1.3 0 0.16 <0.10 <0.10 7.2 26.0 10.0	0.11 <0.05 4.0 370 1.2 <10 0.15 <0.10 <0.10 7.5 26.0 9.0	0.29 <0.05 12.0 180 1.2 0 0.15 <0.10 <0.10 7.4
TKN	10	0.18	0.13	0.27	0.18	0.33

Golder Associates

Sample Source: MW 99-2			18-Dec-2001	24-Jan-2002	13-Feb-2002	Sheet: 4	
Date Sampled:		13-Nov-2001				15-Mar-2002	
 Parameter	ODWQS		·		· · · · · · · · · · · · · · · · · · ·	 	
Ammonia (as N)		0.27	0.19	0.36	0.23	0.10	
Bromide		<0.05	0.13	0.09	<0.05	<0.05	
Chloride	250	18.0	19.0	15.0	13.0	10.0	
Conductivity (uS/cm)		270	270	290	250	220	
DOC	5	0.9	1.3	1.8	1.6	1.6	
Escherichia coli (per 100mL)	0	0	0	0	0	0	
Fluoride	1.5	0.52	0.27	0.51	0.50	0.55	
Nitrate (as N)	10	0.11	0.12	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.8	7.4	7.9	7.8	8.2	
Phosphorus (total)						7	
Sulphate	500	42.0	28.0	30.0	30.0	29.0	
Temperature (C)	15	7.5	8.0	7.5	5.0	6.0	
TKN		0.47	0.19	0.36	0.27	0.10	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-2			15-May-2002	25-Jun-2002	23-Jul-2002	Sheet: 5 19-Aug-2002	
Date Sampled:	18	18-Apr-2002					
 Parameter	ODWQS	· · · · · · · · · · · · · · · · · · ·		· 			
Ammonia (as N)		0.20	0.16	0.11	0.08	0.08	
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05	
Chloride	250	10.0	5.0	7.0	12.0	10.0	
Conductivity (uS/cm)		280	290	320	300	320	
DOC	5	1.5	2.7	1.3	1.5	1.9	
Escherichia coli (per 100mL)	0	0	0	0	0	0	
Fluoride	1.5	0.47	0.52	0.15	0.12	0.14	
Nitrate (as N)	10	<0.10	<0.10	0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	8.0	6.9	7.9	8.1	7.7	
Phosphorus (total)							
Sulphate	500	27.0	32.0	27.0	26.0	26.0	
Temperature (C)	15	9.0	9.5	9.5	11.5	12.0	
TKN		0.26	3.00	0.32	0.17	0.20	

Golder Associates

Project: 051120733

Sample Source: MW 99-2						Sheet: 6
Date Sampled:		26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003
Parameter	ODWQS					<u> </u>
Ammonia (as N)		0.08	0.08	0.13	0.10	0.07
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05
Chloride	250	10.0	13.0	15.0	8.0	13.0
Conductivity (uS/cm)		280	280	280	240	
DOC	5	0.8	1.0	2.3	2.1	1.7
Escherichia coli (per 100mL)	0	0	0	0	0	<10
Fluoride	1.5	0.11	<0.10	<0.10	0.43	0.46
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrite (às N)	1	<0.10	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	8.1	8.4	8.0	8.3	8.4
Phosphorus (total)						
Sulphate	500	26.0	27.0	26.0	30.0	35.0
Temperature (C)	15	12.0	11.0	8.0	8.5	7.0
TKN		0.22	0.19	0.48	0.17	0.18

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-2						Sheet: 7
Date Sampled:		02-Mar-2003	27-Mar-2003	25-Арг-2003	26-May-2003	27-Jun-2003
Parameter	ODWQS					
Ammonia (as N)		0.07	0.06	0.07	0.11	0.06
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05
Chloride	250	12.0	6.0	4.0	7.0	8.0
Conductivity (uS/cm)		320	310	810	210	300
DOC	5	1.7	1.5	1.8	1.2	1.3
Escherichia coli (per 100mL)	0	0	0	0	0	Ö
Fluoride "	1.5	0.44	0.62	0.13	0.13	0.14
Nitrate (as N)	10	<0.10	0.14	0.19	0.23	0.22
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	7.3	8.0	7.7	8.2	8.6
Phosphorus (total)		_	4.580			
Sulphate	500	30.0	37.0	27.0	26.0	27.0
Temperature (C)	15	6.5	6.0	6.0	8.1	9.8
TKN		0.17	0.12	0.69	0.22	0.23

Golder Associates

Project: 051120733

Sample Source: MW 99-2						Sheet: 8	
Date Sampled:		25-Jul-2003	25-Jul-2003(2)	27-Aug-2003	18-Sep-2003	24-Oct-2003	
 Parameter	ODWQS		<u> </u>				
Ammonia (as N)		0.07	0.07	0.05	<0.02	0.08	
Bromide		0.07	0.15	<0.05	<0.05	0.17	
Chloride	250	11.0	14.0	13.0	10.0	20.0	
Conductivity (uS/cm)		319	339	270	300	340	
DOC	5	0.9	1.1	1.0	1.0	0.7	
Escherichia coli (per 100mL)	0	<10	<10	<10	<10	0	
Fluoride	1.5	0.30	0.43	0.21	0.42	0.70	
Nitrate (as N)	10	0.17	0.14	0.14	0.18	<0.10	
Nitrite (às N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
	6.5-8.5	7.8	7.9	8.1	8.5	7.9	
· · · · · · · · · · · · · · · · · · ·							
Sulphate	500	31.0	32.0	25.0	30.0	37.0	
Temperature (C)	15			13.6	13.4	10.8	
TKN		0.17	0.19	0.20	0.13	0.11	
pH (pH units) Phosphorus (total) Sulphate Temperature (C)	500	7.8 31.0	7.9 32.0	8.1 25.0 13.6	8.5 30.0 13.4	7.9 37.0 10.8	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

				Sheet: 9
18-Nov-2003	11-Dec-2003	25-Mar-2004	01-Jun-2004	26-Aug-2004
s				····
0.12	0.04	0.07	0.20	0.05
< 0.05	<0.05	<0.50		<0.50
21.0	38.0	111.0	- · - -	135.0
290	410	610		600
0.5	0.8			1.6
0	0		•••	1.0
0.99	0.21	0.10	<0.10	<0.10
0.55	1.14	5.00		8.40
<0.10	<0.10	<0.20		<0.20
7.6	7.0	8.0		6.7
				•
40.0	19.0	15.6	14.5	16.0
10.7	8.1	5.6		11.7
0.12	0.16	0.14	0.32	0.16
	0.12 <0.05 21.0 290 0.5 0 0.99 0.55 <0.10 7.6	0.12 0.04 <0.05 <0.05 21.0 38.0 290 410 0.5 0.8 0 0 0.99 0.21 0.55 1.14 <0.10 <0.10 7.6 7.0 40.0 19.0 10.7 8.1	0.12 0.04 0.07 <0.05 <0.05 <0.50 21.0 38.0 111.0 290 410 610 0.5 0.8 2.0 0 0 <10 0.99 0.21 0.10 0.55 1.14 5.00 <0.10 <0.10 <0.20 7.6 7.0 8.0 40.0 19.0 15.6 10.7 8.1 5.6	0.12 0.04 0.07 0.20 <0.05 <0.05 <0.50 <0.50 21.0 38.0 111.0 170.0 290 410 610 610 0.5 0.8 2.0 1.7 0 0 <10 0.99 0.21 0.10 <0.10 0.55 1.14 5.00 10.70 <0.10 <0.10 <0.20 7.6 7.0 8.0 7.6 40.0 19.0 15.6 14.5 10.7 8.1 5.6 7.8

Golder Associates

Project: 051120733

Sample Source: MW 99-2						Sheet: 10
Date Sampled:		19-Oct-2004	17-Mar-2005	09-Jun-2005	02-Aug-2005	21-Oct-2005
 Parameter	ODWQS					
Ammonia (as N)		0.14	0.03	0.04	0.05	0.04
Bromide		<0.50	<0.05	<0.05	<0.05	<0.05
Chloride	250	166.0	195.0	232.0	200.0	250.0
Conductivity (uS/cm)		710	1090	1010	680	770
DOC	5	2.2	1.0	0.7	0.8	<0.5
Escherichia coli (per 100mL)	Ö	0	0	<10	<10	<10
Fluoride	1.5	0.10	0.13	<0.10	<0.10	0.13
Nitrate (as N)	10	12.10	16.40	21.50	14.60	19.40
Nitrite (as N)	1	<0.20	0.39	0.13	0.91	<0.10
pH (pH units)	6.5-8.5	7.5	7.7	7.7	7.8	7.8
Phosphorus (total)	0.0 0.0					
Sulphate	500	21.0	34.0	32.0	40.0	42.0
Temperature (C)	15	12.1	6.2	11.0	12.7	11.0
TKN		0.24	0.24	0.21	0.18	0.21

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS Project:

Project: 051120733

Sample Source: MW 99-3						Sheet: 1
Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000	10-Nov-2000	11-Dec-2000
Parameter	ODWQS	·				·
Ammonia (as N)		0.34	0.40	0.45	0.35	Frozen
Bromide		0.22	0.26	0.08	<0.05	
Chloride	250	44.0	63.0	16.0	18.0	
Conductivity (uS/cm)		545	595	447	310	
DOC	5	2.3	2.9	2.6	2.1	
Escherichia coli (per 100mL)	0	<10	0	0	0	
Fluoride "	1.5	0.11	0.15	0.13	0.12	
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.4	7.3	8.0	7.4	
Phosphorus (total)						
Sulphate	500	39.0	32.0	37.0	41.0	
Temperature (C)	15		11.0		6.0	
TKN		2.02	0.77	0.45	0.53	

Golder Associates

Project: 051120733

Sample Source: MW 99-3						Sheet: 2
Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001
Parameter	ODWQS					
Ammonia (as N)		Frozen	0.28	0.13	0.30	0.34
Bromide			0.12	<0.05	<0.05	<0.05
Chloride	250		21.0	12.0	12.0	13.0
Conductivity (uS/cm)			390	340	360	330
DOC	5		2.3	1.2	1.5	1.7
Escherichia coli (per 100mL)	. 0		0	<10	<10	<10
Fluoride	1.5		0.10	0.11	0.11	0.12
Nitrate (as N)	10		0.49	<0.10	<0.10	<0.10
Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5		7.8	7.2	7.1	8.2
Phosphorus (total)						
Sulphate	500		27.0	38.0	37.0	37.0
Temperature (C)	15		5.5	6.5	6.0	7.5
TKN			0.37	0.19	1.04	0.35

Golder Associates

Project: 051120733

Sample Source: MW 99-3						Sheet: 3
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001
Parameter	ODWQS					
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sulphate Temperature (C) TKN	250 5 0 1.5 10 1 6.5-8.5 500	0.29 0.55 13.0 395 1.4 <10 0.13 <0.10 <0.10 8.0 37.0 7.5 0.31	0.30 <0.05 13.0 370 2.0 <10 0.13 <0.10 <0.10 5.8 37.0 8.0 0.38	0.15 <0.05 13.0 400 1.6 0 0.16 <0.10 <0.10 7.1 38.0 8.0 0.27	0.19 <0.05 13.0 470 1.3 <10 0.14 <0.10 <0.10 7.4 38.0 7.0	0.28 0.14 20.0 235 3.3 0 0.14 <0.10 <0.10 7.6 35.0 10.5

Golder Associates

Project: 051120733

Sample Source: MW 99-3						Sheet: 4	
Date Sampled:		13-Nov-2001 18-Dec-2001 24-Jan-200	24-Jan-2002	13-Feb-2002	15-Mar-2002		
Parameter	ODWQS					· · · · · · · · · · · · · · · · · · ·	
Ammonia (as N)		0.28	0.16	0.28	0.28	0.10	
Bromide		<0.05	<0.05	<0.05	0.07	<0.05	
Chloride	250	21.0	15.0	16.0	16.0	14.0	
Conductivity (uS/cm)		330	300	350	320	280	
DOC	5	1.0	1.1	1.5	1.5	1.7	
Escherichia coli (per 100mL)	Ö	0	0	0	0	0	
Fluoride	1.5	0.53	0.59	0.57	0.15	0.56	
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.8	7.1	7.6	7.8	8.2	
Phosphorus (total)	0.0 0.0						
Sulphate	500	40.0	45.0	45.0	39.0	43.0	
Temperature (C)	15	7.0	8.0	7.5	5.0	5.0	
TKN	•	0.52	0.16	0.40	0.29	0.17	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-3						Sheet: 5	
Date Sampled:		18-Apr-2002	15-May-2002	25-Jun-2002	23-Jul-2002	19-Aug-2002	
Parameter	ODWQS			·			
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N)	250 5 0 1.5 10	0.33 <0.05 12.0 320 1.5 0 0.54 <0.10 <0.10	0.45 <0.05 13.0 350 2.5 0 0.48 <0.10 <0.10	0.17 0.07 14.0 360 2.2 0 0.14 <0.10 <0.10	0.17 0.10 17.0 410 1.0 0 0.11 <0.10 <0.10	0.17 <0.05 17.0 440 1.8 0 0.13 <0.10 <0.10	
pH (pH units) Phosphorus (total) Sulphate Temperature (C) TKN	6.5-8.5 500 15	8.0 41.0 9.0 0.36	6.8 42.0 9.5 0.56	7.8 40.0 9.0 0.47	8.0 39.0 10.0 0.26	7.6 38.0 11.0 0.30	

Golder Associates

Project: 051120733

Sample Source: MW 99-3						Sheet: 6	
Date Sampled:		26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003	
Parameter	ODWQS	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	
Ammonia (as N)		0.21	0.21	0.20	0.18	0.22	
Bromide		<0.05	<0.05	<0.05	<0.05	0.16	
Chloride	250	16.0	16.0	13.0	13.0	13.0	
Conductivity (uS/cm)		390	270	290	320		
DOC	5	1.0	1.5	2.4	2.2	1.5	
Escherichia coli (per 100mL)	0	0	0	0	0	<10	
Fluoride	1.5	0.12	<0.10	<0.10	0.54	0.54	
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	8.0	8.3	7.9	8.2	8.5	
Phosphorus (total)							
Sulphate	500	38.0	39.0	37.0	38.0	37.0	
Temperature (C)	15	12.5	10.5	8.0	8.0	7.0	
TKN		0.26	0.36	0.40	0.27	0.22	

Golder Associates

Project: 051120733

Sample Source: MW 99-3						Sheet: 7	
Date Sampled:		02-Mar-2003	27-Mar-2003	25-Apr-2003	26-May-2003	27-Jun-2003	
Parameter	ODWQS						
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sulphate Temperature (C) TKN	250 5 0 1.5 10 1 6.5-8.5 500	0.17 0.14 14.0 440 1.8 0 0.57 <0.10 <0.10 7.3 35.0 6.5 0.29	0.14 0.13 12.0 410 1.9 0 0.55 <0.10 <0.10 8.1 4.650 44.0 6.0 0.26	0.17 <0.05 11.0 500 2.0 <10 <0.10 <0.10 <0.10 7.9 33.0 6.0 0.39	0.25 <0.05 11.0 285 1.8 0 0.11 <0.10 <0.10 8.2 33.0 8.5 0.40	0.17 <0.05 13.0 420 1.5 0 0.11 <0.10 <0.10 8.5 34.0 10.5 0.29	

Golder Associates

Project: 051120733

3 24-Oct-2003	18-Nov-2003
0.19	0.25
0.16	0.10
18.0	20.0
430	
1.2	1.0
0	0
0.60	<0.10
<0.10	<0.10
<0.10	<0.10
7.8	
39.0	52.0
9.5	
0.26	0.27
	0.16 18.0 430 1.2 0 0.60 <0.10 <0.10 7.8 39.0 9.5

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-3						Sheet: 9	
Date Sampled:		11-Dec-2003	25-Mar-2004	25-Mar-2004(2)	01-Jun-2004	26-Aug-2004	
Parameter	ODWQS				·		
Ammonia (as N)		0.16	0.16	0.20	0.27	0.22	
Bromide		0.16	<0.50	<0.50	<0.50	<0.50	
Chloride	250	21.0	40.6	42.4	39.8	41.6	
Conductivity (uS/cm)		520	650		440	480	
DOC	5	1.6	2.7	2.2	2.5	2.4	
Escherichia coli (per 100mL)	Ö	0	<10	<10			
Fluoride	1.5	0.19	<0.10	<0.10	<0.10	<0.10	
Nitrate (as N)	10	<0.10	<0.20	<0.20	<0.20	<0.20	
Nitrite (as N)	1	<0.10	<0.20	<0.20	<0.20	<0.20	
pH (pH units)	6.5-8.5	7.0	7.8	7.8	7.6	6.7	
Phosphorus (total)							
Sulphate	500	28.0	27.5	26.5	31.1	30.9	
Temperature (C)	15	7.7	6.3		7.5	10.3	
TKN		0.27	0.30	0.31	0.59	0.34	

Golder Associates

Sample Source: MW 99-3						Sheet: 10
Date Sampled:		19-Oct-2004 17-Mar-2005	09-Jun-2005	02-Aug-2005	21-Oct-2005	
Parameter	ODWQS					
Ammonia (as N)		0.27	0.15	0.14	0.20	0.12
Bromide		<0.50	0.14	0.15	<0.05	0.12
Chloride	250	49.4	107.0	105.0	101.0	113.0
Conductivity (uS/cm)		500	840	800	560	590
DOC	5	2.6	2.3	1.1	1.8	1.0
Escherichia coli (per 100mL)	Ō	0	0	<10	<10	<10
Fluoride "	1.5	<0.10	0.14	0.10	0.15	0.12
Nitrate (as N)	10	<0.20	<0.10	<0.10	<0.10	<0.10
Nitrite (as N)	1	<0.20	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	7.8	7.9	7.7	7.5	7.9
Phosphorus (total)						
Sulphate	500	30.0	28.0	25.0	27.0	23.0
Temperature (C)	15	11.1	7.5	12.0	10.4	12.0
TKN		0.39	0.37	0.56	0.38	0.30

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-4						Sheet: 1	
Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000	10-Nov-2000	11-Dec-2000	
Parameter	ODWQS						
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (dissolved reactive) Phosphorus (total) Sulphate Temperature (C)	250 5 0 1.5 10 1 6.5-8.5	0.89 3.52 591.0 2080 6.2 <10 0.17 0.32 <0.10 7.6 0.050 36.0	0.29 6.37 1160.0 3760 6.0 1 0.20 <0.10 <0.10 7.6 18.100 8.0 13.0	1.28 5.19 1030.0 3310 3.9 0 0.22 <0.10 <0.10 7.7 0.600 8.0	1.61 <0.05 1030.0 2550 5.8 0 0.22 <0.10 <0.10 7.7 0.090 5.0	Frozen	
TKN	10	2.35	1.66	1.49	1.88		

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS Project: 051120733

Sample Source: MW 99-4						Sheet: 2
Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001
Parameter	ODWQS				· · · · · · · · · · · · · · · · · · ·	
Ammonia (as N)		Frozen	0.33	0.36	0.68	0.17
Bromide	050		<0.05	<0.05 23.0	<0.05 205.0	3.75 497.0
Chloride	250		20.0 390	410	850	1600
Conductivity (uS/cm) DOC	5		2.5	1.5	2.2	2.2
Escherichia coli (per 100mL)	0		0	<10	<10	<10
Fluoride	1.5		0.10	0.11	0.23	0.22
Nitrate (as N)	10		0.44	<0.10	<0.10	0.41
Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5		7.8	7.2	7.6	8.0
Phosphorus (dissolved reactive)						
Phosphorus (total)			5.730	6.340	0.890	5.250
Sulphate	500		28.0	35.0	48.0	25.0
Temperature (C)	15		6.0	6.0	5.5	10.0
TKN			0.37	0.42	0.80	0.44

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-4				•		Sheet: 3
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001
Parameter	ODWQS					·
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (dissolved reactive) Phosphorus (total)	250 5 0 1.5 10 1 6.5-8.5	1.65 <0.05 653.0 2150 3.5 <10 0.19 2.23 <0.10 6.9	1.27 6.23 993.0 2900 4.1 <10 0.23 0.40 <0.10 6.9	1.59 13.40 1200.0 3200 3.3 0 0.26 0.28 <0.10 7.1	1.71 6.75 1320.0 4150 3.2 <10 0.23 <0.10 0.13 7.4 0.030 5.660	1.94 4.46 1130.0 2600 3.4 0 0.21 <0.10 0.10 7.6 0.060
Sulphate Temperature (C) TKN	500 15	19.0 8.0 1.54	8.0 7.5 1.69	5.0 9.0 1.70	5.0 5.0 8.0 1.89	2.160 6.0 9.0 1.94

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-4						Sheet: 4
Date Sampled:		13-Nov-2001	13-Nov-2001 18-Dec-2001 24-Jan-2002 13-	13-Feb-2002	15-Mar-2002	
 Parameter	ODWQS			· .		
Ammonia (as N)		1.43	1.29	1.45	1.30	0.60
Bromide		2.34	4.35	4.64	4.07	1.82
Chloride	250	1090.0	1000.0	1020.0	902.0	725.0
Conductivity (uS/cm)		2900	2700	3100	3350	2100
DOC	5	3.4	3.1	2.9	2.4	2.9
Escherichia coli (per 100mL)	0	0	0	0	0	0
Fluoride	1.5	0.47	0.53	0.62	0.62	0.65
Nitrate (as N)	10	0.69	0.57	0.32	1.61	0.21
Nitrite (as N)	1 .	0.54	1.16	0.14	0.50	0.17
pH (pH units)	6.5-8.5	7.2	7.0	7.6	7.4	7.9
Phosphorus (dissolved reactive)		0.050	0.060	0.070	0.120	0.080
Phosphorus (total)		7.780	0.310	4.200	4.040	2.190
Sulphate	500	11.0	12.0	13.0	16.0	20.0
Temperature (C)	15	4.0	7.0	6.5	5.0	6.0
TKN		1.97	1.29	1.81	1.55	1.09

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS Pro

Project: 051120733

Sample Source: MW 99-4						Sheet: 5
Date Sampled:		18-Apr-2002	15-May-2002	25-Jun-2002	23-Jul-2002	19-Aug-2002
Parameter	ODWQS					
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (dissolved reactive) Phosphorus (total) Sulphate Temperature (C) TKN	250 5 0 1.5 10 1 6.5-8.5	0.97 2.41 583.0 1750 1.7 0 0.64 0.15 <0.10 7.1 0.090 3.400 24.0 9.0 1.03	1.47 3.14 824.0 2400 3.4 0 0.55 0.19 <0.10 7.0 0.090 3.340 15.0 9.5 1.57	0.97 2.18 570.0 2000 2.4 0 0.23 0.36 <0.10 7.9 0.110 4.900 19.0 10.0 1.19	1.44 4.93 1100.0 2400 3.3 1 0.15 <0.10 <0.10 7.9 0.140 2.740 7.0 12.0 1.65	1.48 5.90 1280.0 4000 3.7 0 0.25 0.35 <0.10 7.4 0.210 3.440 6.0 11.0

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

			Sheet: 6		
	26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003
ODWQS	· · · · · · · · · · · · · · · · · · ·				
	1.79	1.69	1.57	1.56	1.56
050					<0.05
250					1010.0
5					3.2
					<10
_	_	-	_	-	0.51
		0.10	0.10	0.27	0.16
1	<0.10	<0.10	<0.10	<0.10	<0.10
6.5-8.5	7.7	8.2	7.8	8.4	8.4
	0.170	0.200	0.160	0.190	0.160
	3.600	6.200	5.020	2.630	3.750
500	8.0	13.0	8.0	11.0	11.0
15	12.0	9.0	7.0	8.0	7.0
	1.94	1.95	1.84	1.76	1.59
	250 5 0 1.5 10 1 6.5-8.5	0DWQS 1.79	0DWQS 1.79 1.69 <0.05	ODWQS 1.79 1.69 1.57 <0.05	ODWQS 1.79 1.69 1.57 1.56 <0.05

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-4						Sheet: 7
Date Sampled:		02-Mar-2003	27-Mar-2003	25-Арг-2003	26-May-2003	27-Jun-2003
Parameter	ODWQS					
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (dissolved reactive) Phosphorus (total) Sulphate Temperature (C) TKN	250 5 0 1.5 10 1 6.5-8.5	1.62 6.50 1080.0 3800 3.7 0 0.87 0.11 <0.10 7.6 0.260 3.080 17.0 7.0	1.07 7.40 815.0 2550 2.5 0 0.61 0.39 0.26 8.1 0.150 2.100 15.0 5.0 1.16	0.61 2.75 536.0 2440 2.0 0 0.19 0.25 <0.10 8.0 0.150 2.850 22.0 7.0 0.73	0.92 5.86 640.0 2050 2.0 0 0.18 <0.10 <0.10 7.8 0.220 2.010 14.0 8.2 1.06	1.14 4.97 826.0 3000 2.7 0 0.21 0.70 <0.10 8.3 0.110 4.100 14.0 8.4 1.47

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

	Sample Source: MW 99-4						Sheet: 8	
	Date Sampled:		25-Jul-2003	27-Aug-2003	18-Sep-2003	24-Oct-2003	18-Nov-2003	
_	Parameter	ODWQS	· ·					
	Ammonia (as N)		1.20	1.31	1.39	1.46	1.13	
	Bromide		4.87	5.72	11.90	<0.05	5.76	
	Chloride	250	945.0	1080.0	1090.0	948.0	958.0	
	Conductivity (uS/cm)		3370	2900	3450	3400	>2000	
	DOC	5	2.7	2.5	3.2	2.3	1.9	
	Escherichia coli (per 100mL)	0	<10	<10	<10	0	0	
	Fluoride	1.5	0.40	0.54	0.93	0.60	0.23	
	Nitrate (as N)	10	0.13	<0.10	0.34	<0.10	0.33	
	Nitrite (as N)	1	<0.10	<0.10	0.17	0.18	0.50	
	pH (pH units)	6.5-8.5	8.0	8.1	8.3	7.7	7.5	
	Phosphorus (dissolved reactive)		0.160	0.170	0.200	0.120	0.160	
	Phosphorus (total)		2.730	2.860	0.220	2.450	0.330	
	Sulphate	500	17.0	19.0	24.0	16.0	29.0	
	Temperature (C)	15		10.8	11.4	8.1	7.9	
	TKN		1.67	1.50	<0.05	1.53	1.21	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-4

Sheet: 9

Date Sampled:		11-Dec-2003	01-Jun-2004	02-Aug-2005
Parameter	ODWQS			
Ammonia (as N)		1.14	1.01	1.27
Bromide		5.59	3.50	<0.05
Chloride	250	752.0	944.0	1270.0
Conductivity (uS/cm)		3500	>1990	2060
DOC	5	1.7	2.7	3.6
Escherichia coli (per 100mL)	Ö	0		<10
Fluoride	1.5	0.27	0.20	0.24
Nitrate (as N)	10	0.47	1.10	0.40
Nitrite (as N)	1	0.22	<2.00	<0.10
pH (pH units)	6.5-8.5	8.1	8.2	7.6
Phosphorus (dissolved reactive)		0.090	0.123	0.170
Phosphorus (total)		1.900	1.980	0.200
Sulphate	500	15.0	12.5	6.0
Temperature (C)	15	7.5	6.6	9.3
TKN		1.40	2.24	1.61

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-5						Sheet: 1	
Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000	10-Nov-2000	11-Dec-2000	
 Parameter	ODWQS						
 Ammonia (as N) Bromide		0.59 0.32	0.29 0.11	0.32 0.13	0.51 <0.05	Frozen	
Chloride Conductivity (uS/cm) DOC	250 5	77.0 588 4.5	21.0 329 2.3	29.0 345 3.0	7.0 600 2.1		
Escherichia coli (per 100mL) Fluoride	0 1.5	10 <0.10	0 0.14	0 0.14	1 0.11		
Nitrate (as N) Nitrite (as N) pH (pH units)	10 1 6.5-8.5	0.21 <0.10 7.8	0.20 <0.10 7.7	0.24 <0.10 7.8	<0.10 <0.10 8.0		
Phosphorus (dissolved reactive) Phosphorus (total)	0.5-0.5	0.040	0.050	0.080	1.360		
Sulphate Temperature (C)	500 15	39.0	26.0 10.0	24.0	47.0 5.0		
TKN		3.65	0.52	0.46	0.68		

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-5		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	Sheet: 2 11-May-2001
Date Sampled:						
 Parameter	ODWQS					
Ammonia (as N)		Frozen	0.37	0.34	0.02	0.15
Bromide			<0.05	0.20	<0.05	<0.05
Chloride	250		15.0	28.0	5.0	17.0
Conductivity (uS/cm)			360	415	255	310
DOC	5		2.6	1.6	1.2	1.7
Escherichia coli (per 100mL)	0		0	<10	<10	<10
Fluoride	1.5		<0.10	0.11	0.11	0.11
Nitrate (as N)	10		0.32	<0.10	<0.10	0.21
Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5		7.7	6.9	7.6	8.0
Phosphorus (dissolved reactive)						
Phosphorus (total)			6.170	7.210	4.460	0.500
Sulphate	500		35.0	35.0	23.0	28.0
Temperature (C)	15		6.0	6.0	6.0	6.0
TKN	_		0.62	0.42	0.14	0.31

Golder Associates

Project: 051120733

Sample Source: MW 99-5						Sheet: 3	
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001	
Parameter	ODWQS						
Ammonia (as N)		0.11	0.13	0.10	0.26	0.82	
Bromide		0.57	0.10	<0.05	0.34	1.71	
Chloride	250	16.0	22.0	20.0	62.0	360.0	
Conductivity (uS/cm)		360	300	340	450	1025	
DOC	5	1.7	1.4	1.1	1.0	1.1	
Escherichia coli (per 100mL)	0	<10	<10	0	<10	0	
Fluoride "	1.5	0.12	0.13	0.14	0.14	0.16	
Nitrate (as N)	10	0.25	0.22	0.19	0.12	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.3	5.0	7.2	7.3	7.7	
Phosphorus (dissolved reactive)					<0.010	0.020	
Phosphorus (total)		5.710	1.750	4.150	2.090	2.480	
Sulphate	500	27.0	26.0	25.0	27.0	19.0	
Temperature (C)	15	9.0	7.0	9.0	8.5	8.0	
TKN		0.27	0.13	0.29	0.45	0.98	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-5						Sheet: 4	
Date Sampled:		13-Nov-2001	18-Dec-2001	24-Jan-2002	13-Feb-2002	15-Mar-2002	
Parameter	ODWQS				<u> </u>		
Ammonia (as N)		0.70	0.75	0.89	0.55	0.37	
Bromide		1.43	1.90	1.75	0.89	0.65	
Chloride	250	400.0	468.0	400.0	216.0	285.0	
Conductivity (uS/cm)		1200	1400	1750	1300	1100	
DOC	5	1.2	1.5	1.2	0.9	1.8	
Escherichia coli (per 100mL)	0	0	0	0	0	0	
Fluoride	1.5	0.53	0.53	0.64	0.51	0.69	
Nitrate (as N)	10	0.12	0.13	<0.10	0.15	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.4	7.1	8.2	7.7	8.3	
Phosphorus (dissolved reactive)		0.020	0.010	<0.010	0.120	0.030	
Phosphorus (total)		2.410	0.090	4.760	4.270	2.580	
Sulphate	500	24.0	23.0	25.0	29.0	28.0	
Temperature (C)	15	4.5	7.0	6.0	5.0	5.0	
TKN		0.88	0.77	1.22	0.57	0.55	

Golder Associates

Project: 051120733

Samp	Sample Source: MW 99-5								
Date :	Sampled:		18-Apr-2002	15-May-2002	25-Jun-2002	23-Jul-2002	19-Aug-2002		
Paran	neter	ODWQS	· · · ·						
Ammo	onia (as N)		0.32 0.25	0.26 0.14	0.17 0.12	0.13 0.16	0.14 <0.05		
Chlori		250	59.0	31.0	32.0	32.0	52.0		
Cond DOC	uctivity (uS/cm)	5	480 1.4	400 1.9	370 1.5	420 1.2	520 1.5		
Esche	erichia coli (per 100mL)	0	0	0	0	1	0		
Fluori	de e (as N)	1.5 10	0.57 0.10	0.46 0.22	0.14 0.27	0.10 0.21	0.12 0.17		
Nitrite	(as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10		
	H units) phorus (dissolved reactive)	6.5-8.5	7.6 0.020	7.1 <0.010	8.4 0.070	8.2 0.030	7.6 0.120		
Phos	phorus (total)		1.720	0.210	4.480	6.570	14.300		
Sulph Temp	eate perature (C)	500 15	30.0 8.0	30.0 9.5	26.0 9.5	25.0 9.0	26.0 12.0		
TKN	• •		0.36	0.93	0.36	0.22	0.14		

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-5						Sheet: 6	
Date Sampled:		26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003	
Parameter	ODWQS	· · · · · · · · · · · · · · · · · · ·	·			····	
Ammonia (as N)		0.22	0.42	0.62	0.57	0.41	
Bromide		<0.05	1.29	2.09	2.04	1.19	
Chloride	250	85.0	270.0	406.0	415.0	244.0	
Conductivity (uS/cm)		520	940	1200	1200	*	
DOC	5	0.5	1.1	2.0	1.9	1.4	
Escherichia coli (per 100mL)	0	0	0	0	0	<10	
Fluoride	1.5	0.12	0.56	0.12	0.62	0.50	
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	8.0	8.2	8.0	8.2	8.5	
Phosphorus (dissolved reactive)		0.040	0.070	0.050	0.060	0.170	
Phosphorus (total)		14.200	19.800	3.900	7.160	7.260	
Sulphate	500	26.0	25.0	19.0	29.0	31.0	
Temperature (C)	15	11.0	9.0	7.0	7.0	7.5	
TKN		0.30	0.55	0.99	0.80	0.52	
	Date Sampled: Parameter Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (dissolved reactive) Phosphorus (total) Sulphate Temperature (C)	Date Sampled: Parameter ODWQS Ammonia (as N) Bromide Chloride Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) 10 Nitrite (as N) 11 pH (pH units) Phosphorus (dissolved reactive) Phosphorus (total) Sulphate 500 Temperature (C) 15	Date Sampled: 26-Sep-2002 Parameter ODWQS Ammonia (as N) 0.22 Bromide <0.05	Date Sampled: 26-Sep-2002 23-Oct-2002 Parameter ODWQS Ammonia (as N) 0.22 0.42 Bromide <0.05	Date Sampled: 26-Sep-2002 23-Oct-2002 24-Nov-2002 Parameter ODWQS Ammonia (as N) 0.22 0.42 0.62 Bromide <0.05	Date Sampled: 26-Sep-2002 23-Oct-2002 24-Nov-2002 12-Dec-2002 Parameter ODWQS Ammonia (as N) 0.22 0.42 0.62 0.57 Bromide <0.05	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

					Sheet: 7
	02-Mar-2003	27-Mar-2003	25-Apr-2003	26-May-2003	27-Jun-2003
ODWQS	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
	0.22	0.28	0.48	0.20	0.14
*	0.47	1.40	2.34	0.62	0.78
250	87.0	276.0	343.0	73.0	70.0
	660	1090	1020	375	500
5	2.6	1.7	1.8	1.6	1.2
0	0	0	0	0	0
1.5	0.55	0.55	0.14	0.12	0.14
10	0.13	0.10	<0.10	0.13	0.17
1	<0.10	<0.10	<0.10	<0.10	<0.10
6.5-8.5	8.2	7.9	7.7	8.3	8.5
	0.080	0.110	0.060	0.150	0.050
	4.640	3.010	6.000	3.080	7.150
500	27.0	24.0	20.0	26.0	27.0
15	6.5	5.0	6.0	7.0	7.5
	0.41	0.56	0.69	0.40	0.25
	250 5 0 1.5 10 1 6.5-8.5	0.22 0.47 250 87.0 660 5 2.6 0 0 1.5 0.55 10 0.13 1 <0.10 6.5-8.5 8.2 0.080 4.640 500 27.0 15 6.5	0.22 0.28 0.47 1.40 250 87.0 276.0 660 1090 5 2.6 1.7 0 0 0 1.5 0.55 0.55 10 0.13 0.10 1 <0.10	ODWQS 0.22 0.28 0.48 0.47 1.40 2.34 250 87.0 276.0 343.0 660 1090 1020 5 2.6 1.7 1.8 0 0 0 0 1.5 0.55 0.55 0.14 10 0.13 0.10 <0.10	ODWQS 0.22 0.28 0.48 0.20 0.47 1.40 2.34 0.62 250 87.0 276.0 343.0 73.0 660 1090 1020 375 5 2.6 1.7 1.8 1.6 0 0 0 0 0 1.5 0.55 0.55 0.14 0.12 10 0.13 0.10 <0.10

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-5						Sheet: 8
Date Sampled:		25-Jul-2003	27-Aug-2003	18-Sep-2003	24-Oct-2003	18-Nov-2003
Parameter	ODWQS					
Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units)	250 5 0 1.5 10 1 6.5-8.5	0.20 0.77 129.0 696 0.7 <10 0.32 <0.10 <0.10 7.8	0.14 0.82 153.0 620 0.8 <10 0.22 <0.10 <0.10 8.1	0.11 1.46 169.0 900 1.0 <10 0.21 <0.10 <0.10 8.6	0.50 1.91 409.0 1700 0.7 0 0.54 <0.10 <0.10 7.8	0.75 3.03 514.0 1480 <0.5 0 0.12 0.10 <0.10 7.8
Phosphorus (dissolved reactive) Phosphorus (total) Sulphate Temperature (C) TKN	500 15	0.050 4.990 30.0 0.39	0.060 1.900 36.0 11.1 0.24	0.060 0.100 31.0 10.2 0.42	0.030 4.840 24.0 7.5 0.59	0.090 0.090 34.0 7.8 0.77

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-5

Sheet: 9

Date Sampled:		11-Dec-2003	01-Jun-2004	02-Aug-2005
Parameter	ODWQS			
Ammonia (as N)		0.21	<0.03	0.07
Bromide		2.03	<0.50	0.16
Chloride	250	271.0	20.7	29.0
Conductivity (uS/cm)		1600	240	255
DOC	5	0.7	1.1	1.6
Escherichia coli (per 100mL)	Ō	0		<10
Fluoride	1.5	0.19	<0.10	0.14
Nitrate (as N)	10	0.28	0.40	0.35
Nitrite (as N)	1	<0.10	<0.20	<0.10
pH (pH units)	6.5-8.5	8.3	8.2	7.8
Phosphorus (dissolved reactive)		0.020	0.010	0.090
Phosphorus (total)		1.490	2.270	3.050
Sulphate	500	21.0	24.6	24.0
Temperature (C)	15	7.0	5.2	10.7
TKN		0.31	0.93	0.22

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-6							
Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000	10-Nov-2000	11-Dec-2000	
 Parameter ODWQS					·		
Ammonia (as N)		0.77	0.81	0.95	0.89	Frozen	
Bromide		<0.05	1.25	1.30	1.07		
Chloride	250	195.0	182.0	199.0	<1.0		
Conductivity (uS/cm)		847	821	838	600		
DOC	5	2.3	2.3	2.2	1.7		
Escherichia coli (per 100mL)	0	<10	0	0	0		
Fluoride	1.5	0.21	0.19	0.22	0.21		
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10		
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10		
pH (pH units)	6.5-8.5	8.0	6.9	8.1	7.7		
Sulphate	500	<3.0	4.0	3.0	21.0		
Temperature (C)	15		10.0		5.0		
TKN		2.87	1.12	1.11	1.24		

Golder Associates

Project: 051120733

Sample Source: MW 99-6				Sheet: 2			
Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001	
Parameter	ODWQS			····		·	
Ammonia (as N)		0.76	0.75	0.80	0.43	0.30	
Bromide		1.36	0.75	2.46	<0.05	0.76	
Chloride	250	215.0	150.0	189.0	32.0	136.0	
Conductivity (uS/cm)		700	600	600	420	550	
DOC	5	1.0	3.1	2.1	1.8	2.7	
Escherichia coli (per 100mL)	. 0	0	0	<10	<10	<10	
Fluoride	1.5	0.18	0.19	0.27	0.15	0.18	
Nitrate (as N)	10	0.19	<0.10	0.18	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.0	7.6	7.3	7.2	8.1	
Phosphorus (total)							
Sulphate	500	3.0	11.0	5.0	26.0	11.0	
Temperature (C)	15	6.5	5.5	5.5	5.5	9.0	
TKN		0.83	0.78	1.08	0.71	0.63	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-6		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	Sheet: 3	
Date Sampled:						18-Oct-2001	
Parameter	ODWQS	· <u> </u>	· ,		·		
Ammonia (as N)		0.94	0.84	0.85	0.90	1.10	
Bromide `		0.48	0.76	1.32	0.94	1.06	
Chloride	250	194.0	208.0	196.0	197.0	201.0	
Conductivity (uS/cm)		600	550	650	750	390	
DOC	5	1.1	2.1	1.2	0.9	1.6	
Escherichia coli (per 100mL)	Ó	<10	<10	0	<10	0	
Fluoride	1.5	0.20	0.22	0.24	0.22	0.24	
Nitrate (as N)	10	0.59	<0.10	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	8.1	6.2	7.0	7.5	8.2	
Phosphorus (total)					,,,		
Sulphate	500	6.0	4.0	4.0	4.0	4.0	
Temperature (C)	15	11.5	7.0	10.0	9.0	9.5	
TKN	-	0.93	0.94	0.86	1.07	1.19	

Golder Associates

Project: 051120733

	Sample Source: MW 99-6				Sheet: 4			
	Date Sampled:		13-Nov-2001	18-Dec-2001	24-Jan-2002	13-Feb-2002	15-Mar-2002	
_	Parameter	ODWQS						
	Ammonia (as N)		0.97	1.13	1.15	1.23	0.39	
	Bromide `		0.91	1.11	1.10	1.02	0.37	
	Chloride	250	223.0	226.0	222.0	223.0	149.0	
	Conductivity (uS/cm)		600	575	520	560	380	
	DOC	5	1.2	1.6	1.3	1.0	2.1	
	Escherichia coli (per 100mL)	0	0	0	0	0	0	
	Fluoride "	1.5	0.65	0.61	0.60	0.56	0.31	
	Nitrate (as N)	10	<0.10	0.25	<0.10	<0.10	<0.10	
	Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
	pH (pH units)	6.5-8.5	8.1	7.5	8.4	7.8	8.3	
	Phosphorus (total)							
	Sulphate	500	8.0	9.0	8.0	8.0	15.0	
	Temperature (C)	15	7.0	6.5	6.0	5.0	4.0	
	TKN		1.10	1.15	1.17	1.29	0.54	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS P

Project: 051120733

99-6			15- M ay-2002	25-Jun-2002	23-Jul-2002	Sheet: 5 19-Aug-2002
		18-Apr-2002				
·	ODWQS	·	·		·	
		0.81	1.09	0.74	0.71	0.71
		0.34	0.34	0.69	0.93	1.03
	250	76.0	70.0	170.0	196.0	210.0
		400	380	640	800	800
	5	2.7	2.9	2.6	1.1	2.0
100mL)	0	0	0	0	0	0
,	1.5	0.59	0.60	0.23	0.20	0.22
	10	<0.10	0.17	<0.10	<0.10	<0.10
	1	<0.10	<0.10	<0.10	<0.10	<0.10
	6.5-8.5	8.2	7.0	7.9	8.3	7.8
						-
	500	25.0	28.0	12.0	7.0	5.0
	15	10.0	10.0	8.0	11.5	11.0
		0.88	1.44	1.00	0.72	1.01
	99-6 100mL)	250 5 100mL) 0 1.5 10 1 6.5-8.5	18-Apr-2002 ODWQS 0.81 0.34 250 76.0 400 5 2.7 100mL) 0 0 1.5 0.59 10 <0.10 1 <0.10 6.5-8.5 8.2 500 25.0 15 10.0	18-Apr-2002 15-May-2002 ODWQS 0.81 1.09 0.34 0.34 250 76.0 70.0 400 380 5 2.7 2.9 100mL) 0 0 0 1.5 0.59 0.60 10 <0.10 0.17 1 <0.10 <0.10 6.5-8.5 8.2 7.0 500 25.0 28.0 15 10.0 10.0	18-Apr-2002 15-May-2002 25-Jun-2002 ODWQS 0.81 1.09 0.74 0.34 0.34 0.69 250 76.0 70.0 170.0 400 380 640 5 2.7 2.9 2.6 100mL) 0 0 0 0 1.5 0.59 0.60 0.23 10 <0.10 0.17 <0.10 1 <0.10 <0.10 <0.10 1.5 <0.59 0.60 0.23 50 <0.10 <0.10 1 <0.10 <0.10 <0.10 1 <0.10 <0.10 <0.10 1 <0.10 <0.10 1 <0.10 <0.10 6.5-8.5 8.2 7.0 7.9 500 25.0 28.0 12.0 15 10.0 10.0 8.0	18-Apr-2002 15-May-2002 25-Jun-2002 23-Jul-2002 ODWQS 0.81

Golder Associates

Project: 051120733

			•		Sheet: 6	
	26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003	
ODWQS						
	0.80	0.8 6	0.90	0.98	0.93	
	<0.05	0.76	0.97	0.93	1.09	
250	222.0	223.0	235.0	239.0	244.0	
	680	640	620	730		
5	0.9	1.1	2.7	2.4	1.8	
Ō	0	0	0	0	<10	
1.5	0.13	0.18	0.29	0.76	0.61	
		<0.10	<0.10	<0.10	<0.10	
1		<0.10	<0.10	<0.10	<0.10	
6.5-8.5		8.5	7.8	8.5	0.0	
0.0 0.0	·					
500	9.0	3.0	3.0	6.0	6.0	
		10.0	7.5	7.5	7.0	
	1.07	1.25	1.24	1.11	0.93	
	250 5	0.80 <0.05 250 222.0 680 5 0.9 0 1.5 0.13 10 1.19 1 <0.10 6.5-8.5 8.2 500 9.0 15 12.5	ODWQS 0.80 0.86 <0.05	ODWQS 0.80 0.86 0.90 <0.05	ODWQS 0.80 0.86 0.90 0.98 <0.05	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-6						Sheet: 7	
Date Sampled:		02-Mar-2003	27-Mar-2003	25-Apr-2003	26-May-2003	27-Jun-2003	
Parameter	ODWQS	<u> </u>				<u> </u>	
Ammonia (as N)		0.81	0.77	0.86	0.94	0.72	
Bromide		1.17	1.28	1.71	1.43	3.12	
Chloride	250	246.0	226.0	243.0	222.0	253.0	
Conductivity (uS/cm)		1000	690	710	600	950	
DOC	5	1.9	1.4	2.2	1.3	1.0	
Escherichia coli (per 100mL)	Ö	0	0	0	0	0	
Fluoride	1.5	0.52	0.63	0.19	0.29	0.33	
Nitrate (as N)	10	<0.10	0.15	<0.10	<0.10	0.22	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.9	8.3	8.1	8.3	8.9	
Phosphorus (total)			1.810				
Sulphate	500	5.0	6.0	5.0	7.0	4.0	
Temperature (C)	15	7.0	6.0	7.0	8.4	9.1	
TKN		1.04	0.78	1.14	1.18	0.95	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

			27-Aug-2003(2) 18-Sep-2003		Sheet: 8 24-Oct-2003	
	25-Jul-2003	27-Aug-2003				
ODWQS				· · · · · · · · · · · · · · · · · · ·		
	1.16	0.70	0.70	0.62	0.82	
	1.46	1.50	2.03	1.88	1.35	
250	253.0	260.0	263.0	266.0	262.0	
	1020	800		920	920	
5	0.6	1.1	1.0	1.0	<0.5	
0	<10	<10	<10	<10	0	
1.5	0.42	0.21	0.22	0.65	0.68	
10	<0.10	<0.10	<0.10	<0.10	<0.10	
1	<0.10	<0.10	<0.10	<0.10	<0.10	
6.5-8.5	8.2	8.3		8.8	8.1	
		•				
500	10.0	4.0	3.0	20.0	12.0	
15		14.6		12.8	10.3	
•	1.32	0.90	0.82	0.74	1.25	
	250 5 0 1.5 10 1 6.5-8.5	0DWQS 1.16 1.46 250 253.0 1020 5 0.6 0 <10 1.5 0.42 10 <0.10 1 <0.10 6.5-8.5 8.2 500 10.0	0DWQS 1.16 0.70 1.46 1.50 250 253.0 260.0 1020 800 5 0.6 1.1 0 <10	0DWQS 1.16 0.70 0.70 1.46 1.50 2.03 250 253.0 260.0 263.0 1020 800 5 0.6 1.1 1.0 0 <10	ODWQS 1.16 0.70 0.70 0.62 1.46 1.50 2.03 1.88 250 253.0 260.0 263.0 266.0 1020 800 920 5 0.6 1.1 1.0 1.0 0 <10	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-6						Sheet: 9	
Date Sampled:		24-Oct-2003(2) 18-Nov-2003		11-Dec-2003	11-Dec-200	03(2) 25-Mar-2004	
Parameter	ODWQS				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Ammonia (as N)		0.81	0.87	0.52	0.83	0.83	
Bromide		1.25	<0.05	1.64	1.85	1.10	
Chloride	250	264.0	251.0	229.0	233.0	273.0	
Conductivity (uS/cm)			900	950		1010	
DOC	5	<0.5	1.1	1.2	<0.5	2.7	
Escherichia coli (per 100mL)	0	0	0	0	0	<10	
Fluoride	1.5	0.62	0.19	0.28	0.28	0.20	
Nitrate (as N)	10	<0.10	<0.10	0.12	0.14	0.40	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.20	
pH (pH units)	6.5-8.5	8.2	8.2	6.6		8.5	
Phosphorus (total)							
Sulphate	500	10.0	22.0	7.0	8.0	3.8	
Temperature (C)	15		8.8	7.3		5.4	
TKN `		0.88	3.63	0.74	0.84	0.99	
TKN	•	0.88	3.63	0.74	0.84	0.99	

Golder Associates

Project: 051120733

	Sample Source: MW 99-6						Sheet: 10
	Date Sampled:		01-Jun-2004	26-Aug-2004	19-Oct-2004	17-Mar-2005	17-Mar-2005(2)
_	Parameter	ODWQS	· · · · · · · · · · · · · · · · · · ·		····		
	Ammonia (as N)		0.76	0.81	1.09	0.71	0.81
	Bromide `		<0.50	1.00	1.00	1.61	1.53
	Chloride	250	242.0	275.0	291.0	285.0	276.0
	Conductivity (uS/cm)		730	800	900	1200	•
	DOC	5	1.5	1.6	2.5	1.4	1.2
	Escherichia coli (per 100mL)	. 0			0	0	
	Fluoride	1.5	0.20	0.20	0.20	0.24	0.24
	Nitrate (as N)	10	0.40	0.60	0.80	<0.10	<0.10
	Nitrite (as N)	1	<0.20	<0.20	<0.20	<0.10	<0.10
	pH (pH units)	6.5-8.5	7.7	7.5	8.0	9.5	
	Phosphorus (total)	5.5 5.5	•••				
	Sulphate	500	6.1	2.2	3.9	4.0	4.0
	Temperature (C)	15	7.0	11.6	10.6	7.1	
	TKN	• •	1.02	0.74	1.14	1.03	1.08

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-6

Sheet: 11

Date Sampled:		09-Jun-2005	09-Jun-2005(2)	02-Aug-2005	21-Oct-2005
Parameter	ODWQS				
Ammonia (as N)		0.59	0.58	0.86	0.89
Bromide		1.36	1.53	1.31	1.52
Chloride	250	249.0	255.0	269.0	293.0
Conductivity (uS/cm)	+	990		700	680
DOC	5	0.6	1.4	1.3	<0.5
Escherichia coli (per 100mL)	Ö	<10	<10	<10	<10
Fluoride	1.5	0.18	0.18	0.21	0.22
Nitrate (as N)	10	0.15	<0.10	<0.10	<0.10
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	7.9	0.10	8.2	8.1
Phosphorus (total)				U.L	0.1
Sulphate	500	6.0	4.0	3.0	4.0
Temperature (C)	15	11.0		10.5	10.0
TKN	••	0.77	0.78	1.07	0.89

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7						Sheet: 1	
Date Sampled:		10-Aug-2000	13-Sep-2000	05-Oct-2000	10-Nov-2000	11-Dec-2000	
 Parameter	ODWQS	·					
Ammonia (as N)		0.39	0.68	0.56	0.58	Frozen	
Bromide		0.05	0.20	0.15	<0.05		
Chloride	250	28.0	52.0	29.0	21.0		
Conductivity (uS/cm)		385	451	370	270		
DOC	5	3.9	3.8	5.1	5.3		
Escherichia coli (per 100mL)	Ō	<10	1	0	0		
Fluoride	1.5	<0.10	0.21	0.19	0.17		
Nitrate (as N)	10	<0.10	<0.10	<0.10	0.32		
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10		
pH (pH units)	6.5-8.5	7.7	7.1	7.9	7.6		
Phosphorus (total)							
Sulphate	500	29.0	18.0	21.0	30.0		
Temperature (C)	15		12.0		6.5		
TKN		2.41	0.94	0.78	0.90		

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7			Sheet: 2				
Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001	
Parameter	ODWQS			·			
Ammonia (as N)		Frozen	0.60	0.56	0.33	0.30	
Bromide			0.07	<0.05	0.25	<0.05	
Chloride	250		29.0	22.0	17.0	21.0	
Conductivity (uS/cm)			400	250	335	300	
DOC	5		2.5	4.4	3.6	4.2	
Escherichia coli (per 100mL)	0		0	<10	<10	<10	
Fluoride	1.5		0.12	0.15	0.16	0.15	
Nitrate (as N)	10		0.37	<0.10	<0.10	<0.10	
Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5		7.7	7.2	7.1	8.1	
Phosphorus (total)					,		
Sulphate	500		31.0	29.0	37.0	32.0	
Temperature (C)	15		6.0	5.5	5.5	6.0	
TKN			0.64	0.79	0.85	0.44	

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7				•				
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001		
Parameter	ODWQS	· -			· .			
Ammonia (as N)		0.58	0.57	0.37	0.46	0.66		
Bromide		0.75	0.09	0.15	0.21	0.10		
Chloride	250	20.0	21.0	30.0	27.0	19.0		
Conductivity (uS/cm)		365	335	450	455	220		
DOC	5	3.5	3.6	2.3	2.1	2.8		
Escherichia coli (per 100mL)	0	<10	<10	0	<10	0		
Fluoride "	1.5	0.16	0.17	0.21	0.20	0.17		
Nitrate (as N)	10	<0.10	<0.10	<0.10	0.14	<0.10		
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10		
pH (pH units)	6.5-8.5	7.9	6.3	7.3	7.3	7.8		
Phosphorus (total)								
Sulphate	500	31.0	27.0	22.0	22.0	24.0		
Temperature (C)	15	9.0	8.5	10.0	9.5	11.5		
TKN		0.73	0.71	0.57	0.65	0.74		

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7		13-Nov-2001	18-Dec-2001	24-Jan-2002	13-Feb-2002	Sheet: 4	
Date Sampled:						15-Mar-2002	
Parameter	ODWQS						
Ammonia (as N)		0.56	0.46	0.55	0.62	0.28	
Bromide		<0.05	<0.05	<0.05	<0.05	0.07	
Chloride	250	16.0	13.0	13.0	14.0	15.0	
Conductivity (uS/cm)		300	260	315	300	225	
DOC	5	3.0	3.4	3.4	3.4	4.0	
Escherichia coli (per 100mL)	0	0	0	0	0	0	
Fluoride	1.5	0.58	0.55	0.56	0.50	0.25	
Nitrate (as N)	10	0.19	0.17	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.8	7.4	7.8	7.6	8.2	
Phosphorus (total)							
Sulphate	500	29.0	28.0	30.0	28.0	26.0	
Temperature (C)	15	8.5	7.0	6.5	5.0	5.0	
TKN		0.70	0.77	0.75	0.78	0.48	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7						Sheet: 5
Date Sampled:		18-Apr-2002	15-May-2002	25-Jun-2002	23-Jul-2002	19-Aug-2002
 Parameter	ODWQS					
Ammonia (as N)		0.56	0.78	0.48	0.40	0.44
Bromide		<0.05	<0.05	0.08	0.07	<0.05
Chloride	250	13.0	15.0	17.0	17.0	22.0
Conductivity (uS/cm)		290	300	320	360	410
DOC	5	4.8	4.8	2.0	3.2	4.3
Escherichia coli (per 100mL)	Ō	0	0	0.	0	0
Fluoride	1.5	0.57	0.49	0.17	0.22	0.16
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	8.2	6.7	7.9	7.9	7.6
Phosphorus (total)						
Sulphate	500	26.0	31.0	26.0	26.0	25.0
Temperature (C)	15	9.0	9.5	10.0	12.5	13.0
TKN		0.66	1.00	0.87	0.59	0.47
		-				

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7					Sheet: 6	
Date Sampled:		26-Sep-2002 23-Oct-2002 24-Nov-2	24-Nov-2002	12-Dec-2002	16-Jan-2003	
Parameter	ODWQS					
Ammonia (as N)		0.44	0.53	0.52	0.46	0.46
Bromide		<0.05	0.08	<0.05	< 0.05	<0.05
Chloride	250	42.0	88.0	137.0	126.0	225.0
Conductivity (uS/cm)		370	420	440	540	
DOC	5	2.7	3.1	3.8	4.1	3.2
Escherichia coli (per 100mL)	0	0	0	0	0	<10
Fluoride	1.5	0.15	<0.10	0.10	0.63	0.55
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5	7.8	8.0	7.8	7.8	8.4
Phosphorus (total)						
Sulphate	500	24.0	25.0	25.0	28.0	26.0
Temperature (C)	15	12.0	11.5	7.5	8.0	7.0
TKN		0.69	0.91	0.82	0.84	0.68

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS Project: 051120733

Sample Source: MW 99-7						Sheet: 7	
Date Sampled:	02-Mar-2003		27-Mar-2003	25-Apr-2003	26-May-2003	27-Jun-2003	
Parameter	ODWQS					· ·	
Ammonia (as N)		0.39	0.38	0.42	0.54	0.36	
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05	
Chloride	250	71.0	103.0	11.0	166.0	137.0	
Conductivity (uS/cm)		600	600	720	500	600	
DOC	5	3.8	3.5	3.5	2.9	2.5	
	Ö	0	0	0	0	0	
Fluoride	1.5	0.51	0.45	0.12	0.11	0.24	
Nitrate (as N)	10	<0.10	<0.10	<0.10	<0.10	<0.10	
	1	<0.10	<0.10	<0.10	<0.10	<0.10	
	6.5-8.5		7.7	7.4	7.7	8.1	
			4.340				
, , ,	500	33.0	27.0	26.0	29.0	27.0	
	15		7.0	8.0	7.8	10.6	
TKN	-	0.64	0.61	0.73	0.82	0.67	
	Date Sampled: Parameter Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC Escherichia coli (per 100mL) Fluoride Nitrate (as N) Nitrite (as N) pH (pH units) Phosphorus (total) Sulphate Temperature (C)	Date Sampled: Parameter ODWQS Ammonia (as N) Bromide Chloride 250 Conductivity (uS/cm) DOC 5 Escherichia coli (per 100mL) 0 Fluoride 11.5 Nitrate (as N) 10 Nitrite (as N) 10 pH (pH units) 6.5-8.5 Phosphorus (total) Sulphate 500 Temperature (C) 15	Date Sampled: 02-Mar-2003 Parameter ODWQS Ammonia (as N) 0.39 Bromide <0.05	Date Sampled: 02-Mar-2003 27-Mar-2003 Parameter ODWQS Ammonia (as N) 0.39 0.38 Bromide <0.05	Date Sampled: 02-Mar-2003 27-Mar-2003 25-Apr-2003 Parameter ODWQS Ammonia (as N) 0.39 0.38 0.42 Bromide <0.05	Date Sampled: 02-Mar-2003 27-Mar-2003 25-Apr-2003 26-May-2003 Parameter ODWQS Ammonia (as N) 0.39 0.38 0.42 0.54 Bromide <0.05	

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7						Sheet: 8
Date Sampled:		27-Jun-2003(2) 25-Jul-2003		27-Aug-2003	18-Sep-2003	24-Oct-2003
Parameter	ODWQS		_ .		<u> </u>	· · · · · · · · · · · · · · · · · · ·
Ammonia (as N)		0.37	0.42	0.33	0.19	0.41
Bromide		<0.05	<0.05	<0.05	<0.05	<0.05
Chloride	250	152.0	101.0	170.0	213.0	231.0
Conductivity (uS/cm)			668	680	850	1100
DOC	5	2.4	2.0	2.3	2.2	1.9
Escherichia coli (per 100mL)	0	0	<10	<10	<10	0
Fluoride	1.5	0.14	0.43	0.20	0.48	0.59
Nitrate (as N)	10	<0.10	<0.10	<0.10	0.13	<0.10
Nitrite (as N)	1	<0.10	<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5		7.8	7.6	7.7	7.2
Phosphorus (total)						• •
Sulphate	500	28.0	31.0	31.0	42.0	52.0
Temperature (C)	15		= :-=	15.2	15.7	11.6
TKN	, -	0.59	0.74	0.75	0.42	0.64

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7						Sheet: 9
Date Sampled:		18-Nov-2003	11-Dec-2003	25-Mar-2004	01-Jun-2004	26-Aug-2004
 Parameter	ODWQS	· · ·	 			·
Ammonia (as N)		0.52	0.43	0.48	0.49	0.43
Bromide		<0.05	<0.05	<0.50	<0.50	<0.50
Chloride	250	219.0	235.0	221.0	271.0	314.0
Conductivity (uS/cm)		890	920	1000	950	1000
DOC	5	1.6	2.2	3.5	2.8	3.0
Escherichia coli (per 100mL)	0	0	0	<10		
Fluoride	1.5	<0.10	0.18	<0.10	<0.10	<0.10
Nitrate (as N)	10	<0.10	<0.10	0.20	0.40	0.30
Nitrite (as N)	1	<0.10	<0.10	<0.20	<0.20	<0.20
pH (pH units)	6.5-8.5	6.9	6.9	7.5	7.3	6.7
Phosphorus (total)						77.
Sulphate	500	61.0	39.0	39.2	49.1	55.0
Temperature (C)	15	9.4	8.9	5.4	7.1	13.7
TKN		0.63	0.66	0.60	0.79	0.57

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-7						Sheet: 10	
Date Sampled:		19-Oct-2004	19-Oct-2004(2	2) 09-Jun-2005	02-Aug-2005	21-Oct-2005	
Parameter	ODWQS	·					
Ammonia (as N)		0.89	0.69	0.33	0.39	0.52	
Bromide		<0.50	<0.50	<0.05	<0.05	<0.05	
Chloride	250	322.0	328.0	296.0	297.0	275.0	
Conductivity (uS/cm)		1180		1100	910	900	
DOC	5	6.6	5.6	7.5	3.6	2.9	
Escherichia coli (per 100mL)	0	0		<10	<10	<10	
Fluoride	1.5	<0.10	<0.10	<0.10	0.12	0.14	
Nitrate (as N)	10	0.40	0.50	<0.10	<0.10	<0.10	
Nitrite (as N)	1	<0.20	<0.20	<0.10	<0.10	<0.10	
pH (pH units)	6.5-8.5	7.2		7.4	7.1	7.7	
Phosphorus (total)							
Sulphate	500	62.4	62.9	67.0	69.0	62.0	
Temperature (C)	15	12.9		12.0	14.5	11.0	
TKN		1.07	0.89	0.72	0.69	0.73	

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Dec-2000
zen

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-8						Sheet: 2
Date Sampled:		17-Jan-2001	19-Feb-2001	21-Mar-2001	20-Apr-2001	11-May-2001
Parameter	ODWQS				·	
Ammonia (as N)		Frozen	0.47	0.20	3.58	3.88
Bromide			0.49	<0.05	<0.05	29.40
Chloride	250		129.0	13.0	3450.0	3760.0
Conductivity (uS/cm)			500	390	>5000	>5000
DOC	5		2.1	1.4	12.1	12.3
Escherichia coli (per 100mL)	0		0	<10	<10	<10
Fluoride	1.5		0.19	0.12	<0.10	<0.10
Nitrate (as N)	10		0.25	<0.10	<0.10	<0.10
Nitrite (as N)	1		<0.10	<0.10	<0.10	<0.10
pH (pH units)	6.5-8.5		7.8	6.0	7.5	7.8
Phosphorus (total)						
Sulphate	500		17.0	38.0	68.0	62.0
Temperature (C)	15		5.5	6.5	5.5	8.0
TKN	· - .		0.58	0.30	1.65	4.35

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS Pr

Project: 051120733

Sample Source: MW 99-8						Sheet: 3
Date Sampled:		15-Jun-2001	13-Jul-2001	24-Aug-2001	19-Sep-2001	18-Oct-2001
Parameter	ODWQS			<u></u>		
Ammonia (as N)		3.94	3.35	4.19	4.48	4.08
Bromide `		<0.05	20.40	30.60	16.00	16.50
Chloride	250	5100.0	3610.0	4600.0	4800.0	4570.0
Conductivity (uS/cm)		>5000	>5000	>5000	>5000	>5000
DOC	5	13.3	.11.9	11.2	12.1	11.6
Escherichia coli (per 100mL)	0	<10	<10	0	<10	0
Fluoride	1.5	<0.10	<0.10	<0.10	<0.10	<0.10
Nitrate (as N)	10	<0.10	0.70	0.18	0.53	0.14
Nitrite (as N)	1	<0.10	0.27	<0.10	0.19	<0.10
pH (pH units)	6.5-8.5	7.7	6.3	6.9	7.5	7.4
Phosphorus (total)						
Sulphate	500	62.0	65.0	42.0	34.0	25.0
Temperature (C)	15	8.5	8.0	9.0	8.0	9.0
TKN		3.36	3.37	4.72	5.11	4.37

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-8						Sheet: 4
Date Sampled:		13-Nov-2001	18-Dec-2001	24-Jan-2002	13-Feb-2002	15-Mar-2002
Parameter	ODWQS				 	·
Ammonia (as N)		0.05	2.50	3.68	3.55	3.03
Bromide `		<0.05	16.70	<0.05	<0.05	10.70
Chloride	250	4290.0	4100.0	3920.0	3680.0	3160.0
Conductivity (uS/cm)		>5000	>5000	>5000	>5000	>5000
DOC	5	12.3	13.2	10.8	9.8	11.9
Escherichia coli (per 100mL)	0	0	0	0	0	0
Fluoride	1.5	<0.10	<0.10	<0.10	<0.10	0.28
Nitrate (as N)	10	1.16	0.73	0.21	0.95	0.59
Nitrite (as N)	. 1	<0.10	<0.10	<0.10	0.26	0.23
pH (pH units)	6.5-8.5	7.3	6.9	7.1	7.8	7.1
Phosphorus (total)						
Sulphate `	500	46.0	54.0	82.0	103.0	133.0
Temperature (C)	15	8.0	7.5	9.0	5.0	7.0
TKN		3.61	4.22	4.83	3.97	3.18

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

	Sample Source: MW 99-8						Sheet: 5
	Date Sampled:		18-Apr-2002	15-May-2002	25-Jun-2002	23-Jul-2002	19-Aug-2002
Date Sampled: Parameter Ammonia (as N) Bromide Chloride Conductivity (uS/cm) DOC	Parameter	ODWQS		·			<u> </u>
	Ammonia (as N)		2.88	2.76	3.31	3.49	2.81
			17.30	11.00	0.30	12.30	13.80
		250	3060.0	3320.0	34.0	3500.0	3870.0
			>5000	8400	>5000	>5000	>10000
		5	11.6	11.7	9.8	11.6	12.7
	Escherichia coli (per 100mL)	Ö	0	0	0	0	0
		1.5	0.26	<0.10	0.73	<0.10	<0.10
	Nitrate (as N)	10	0.39	0.95	<0.10	0.31	0.95
	. ,	1 .	<0.10	1.41	<0.10	<0.10	<0.10
		6.5-8.5	6.8	6.9	7.4	7.6	7.3
	. ,,						
		500	137.0	122.0	28.0	104.0	90.0
	Temperature (C)	15	12.0	11.0	14.0	14.0	14.0
	TKN		4.81	2.96	3.66	4.15	3.71

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

					Sheet: 6
	26-Sep-2002	23-Oct-2002	24-Nov-2002	12-Dec-2002	16-Jan-2003
ODWQS					
	4.15	3.90	2.53	2.53	3.33
250	3940.0	3920.0	4140.0	3920.0	<0.05 4190.0
5	11.1	12.6	13.1	12.4	12.5
1.5	0.33	<0.10	<0.10	0 0.2 9	<10 0.32
1	7.74 1.41	0.81 0.23	0.59 <0.10	1.11 0.62	0.45 0.23
6.5-8.5	7.4	7.5	7.6	7.9	7.4
500 15	66.0 12.5	62.0	61.0	76.0	67.0
	5.16	4.64	3.41	9.5 3.18	8.2 3.52
	250 5 0 1.5 10 1 6.5-8.5	ODWQS 4.15 <0.05 250 3940.0 >5000 5 11.1 0 0 1.5 0.33 10 7.74 1 1,41 6.5-8.5 7.4 500 66.0 15 12.5	4.15 3.90 <0.05	4.15 3.90 2.53 <0.05	ODWQS 4.15 3.90 2.53 2.53 <0.05

Golder Associates

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-8						Sheet: 7
Date Sampled:		02-Mar-2003	27-Mar-2003	25-Apr-2003	26-May-2003	27-Jun-2003
Parameter	ODWQS					· .
Ammonia (as N)		2.67	1.55	0.64	1.67	2.64
Bromide		19.20	<0.05	13.50	13.70	10.30
Chloride	250	3880.0	3790.0	2670.0	2560.0	3190.0
Conductivity (uS/cm)		>5000	4750	4280	>5000	9000
DOC	5	11.8	11.6	10.3	9.0	9.6
Escherichia coli (per 100mL)	0	0	0	0	0	0
Fluoride	1.5	0.23	0.24	<0.10	<0.10	0.31
Nitrate (as N)	10	0.51	0.83	1.30	0.44	0.62
Nitrite (as N)	1	<0.10	0.33	0.15	0.19	1.47
pH (pH units)	6.5-8.5	7.3	7.6	7.5	7.8	7.9
Phosphorus (total)	5.5 5.5		0.070			
Sulphate	500	73.0	93.0	143.0	173.0	147.0
Temperature (C)	15	7.0	5.0	7.0	10.0	9.8
TKN		2.88	2.14	1.16	2.38	2.85

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-8						Sheet: 8
Date Sampled:		31-Jul-2003	27-Aug-2003	18-Sep-2003	24-Oct-2003	18-Nov-2003
Parameter	ODWQS		 		·	
Ammonia (as N)		0.51	2.57	1.67	2.02	0.37
Bromide		14.70	22.40	2.36	<0.05	2.31
Chloride	250	2450.0	3950.0	3310.0	3740.0	2340.0
Conductivity (uS/cm)			>10000	>5000	>10000	>2000
DOC	5	9.8	9.9	10.1	12.3	8.7
Escherichia coli (per 100mL)	Ō	<10	<10	<10	0	0
Fluoride "	1.5	0.28	0.21	0.21	0.25	0.19
Nitrate (as N)	10	1.04	0.45	2.63	<0.10	1.58
Nitrite (as N)	1	0.23	0.62	0.36	0.38	<0.10
pH (pH units)	6.5-8.5		7.9	8.2	7.2	7.2
Phosphorus (total)			7.44			
Sulphate	500	177.0	130.0	132.0	97.0	156.0
Temperature (C)	15		15.4	13.8	7.3	8.5
TKN	· -	1.35	3.42	2.58	2.87	0.84
			•			

FOURNIER SEWAGE SYSTEM (NATION MUNICIPALITY) - REPORT OF MONITORING RESULTS

Project: 051120733

Sample Source: MW 99-8					
Date Sampled:		11-Dec-2003	01-Jun-2004	26-Aug-2004	02-Aug-2005
Parameter	ODWQS	·			
Ammonia (as N)		0.79	1.22		2.77
Bromide		13.70	7.50		16.00
Chloride	250	1830.0	1990.0		4580.0
Conductivity (uS/cm)		>5000	>1990	>5000	850
DOC	5	7.8	4.1		12.3
Escherichia coli (per 100mL)	0	0			<10
Fluoride	1.5	0.31	0.20		0.19
Nitrate (as N)	10	0.56	0.70		0.64
Nitrite (as N)	1	0.17	<2.00		0.87
pH (pH units)	6.5-8.5	7.8	7.8	7.0	6.8
Phosphorus (total)					
Sulphate	500	243.0	214.0		77.0
Temperature (C)	15	7.5	8.4	11.2	13.8
TKN		1.32	1.73		3.81

APPENDIX D

REPORT OF ANALYSES SHEETS ACCUTEST LABORATORIES LTD.

Client: Golder Associates Ltd.

32 Steacie Drive Ottawa, ON K2K 2A9 Attention: Ms. Caitlin Martin

SHIP OF THE PERSON NAMES

2005-03-21

Report Number:

Date:

GUIDELINE 051120-733 2005-03-17 250055 Water TYPE Date Submitted: P.O. Number: 2005-03-17 MW 99-10 375145 Project: 0 Matrix: 2005-03-17 9-66 WM 375144 0 2005-03-17 MW 99-3 0 2005-03-17

ct/100mL UNITS

LIMIT 8

MW 99-2

2005-03-17 MW 99-1 375141

> Sample Date: Sample ID:

0

0

ct/100mL UNITS

MDL

PARAMETER

Escherichia Coli

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: APPROVAL:

Analytical Services Manager Peter Haulena

Results relate only to the parameters tested on the samples submitted for analysis.

Client: Golder Associates Ltd.

32 Steacie Drive Ottawa, ON

K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2504604

Date:

2005-03-24

Date Submitted:

2005-03-17

Project:

051120-733

P.O. Number:

250055

							Matrix:	Water			
			LAB ID:	375146	375147	375148	375149	375150		GUIDELINE	
		Sam	ple Date:	2005-03-17	2005-03-17	2005-03-17	2005-03-17	2005-03-17			
			mple ID:	MW 99-1	MW 99-2	MW 99-3	MW 99-6	MW 99-10			
			•		1				ł		
					ļ	'	1				
	PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
Bromide		mg/L	0.05	<0.05	<0.05	0.14	1.61	1.53			
hloride		mg/L	1 1	282	195	107	285	276			
issolved Organic Carbon		mg/L	0.5	3.4	1.0	2.3	1.4	1.2			
luoride		mg/L	0.10	0.13	0.13	0.14	0.24	0.24			i i
I-NH3 (Ammonia)		mg/L	0.02	0.02	0.03	0.15	0.71	0.81			1
I-NO2 (Nitrite)		mg/L	0.10	0.57	0.39	<0.10	<0.10	<0.10		1	
I-NO3 (Nitrate)		mg/L	0.10	14.8	16.4	<0.10	<0.10	<0.10			
Sulphate		mg/L	1 1	78	34	28	4	4			
otal Kjeldahl Nitrogen		mg/L	0.05	0.43	0.24	0.37	1.03	1.08			
otal ryoldalli rita ogon		mg/L	0.03	0.43	0.24	0.57	1.03	1.00			l
					•						
			1								1
				İ					l		
				1							
									ĺ		
								·	i		
									1		
			·								
		-						·			
								·			
										1	
*	•						!				İ
				ł				· ·			
			-]	}
										1.	1
					-					1	1
									· ·	1]
		*									
	·	*									1
			I	i	4				J		1

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration Comment:

APPROVAL:

ADDUTEDT LABORATORIES LTD

POPULATION OF THE ALTERNATION

Client: Golder Associates Ltd.

32 Steacie Drive Ottawa, ON

K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2504604

Date:

2005-03-24

Date Submitted:

2005-03-17

Project:

051120-733

P.O. Number:

250055

Matrix:

Water

							Matrix:		Water		
				BLANK LAB QC % RECOVERY	QC RECOVERY RANGE			GUIDELINE			
			LAB BLANK			DATE ANALYSED					
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS	
Bromide	mg/L	0.05	<0.05	98	90-110	2005-03-22					
Chloride	mg/L	1	<1	97	90-110	2005-03-23		ii .			
Dissolved Organic Carbon	mg/L	0.5	<0.5	102	89-111	2005-03-19	4	ļ			
Fluoride	mg/L	0.10	<0.10	101	90-110	2005-03-22		1		ĺ	
N-NH3 (Ammonia)	mg/L	0.02	<0.02	99	85-115	2005-03-18					
N-NO2 (Nitrite)	mg/L	0.10	<0.10	100	90-110	2005-03-23					
N-NO3 (Nitrate)	mg/L	0.10	<0.10	∖98	90-110	2005-03-22			•		
Sulphate	mg/L	1	<1	100	90-110	2005-03-22					
Total Kjeldahl Nitrogen	mg/L	0.05	<0.05	99	85-115	2005-03-21					
	_										
		1							·		
	•										
									İ	l	
					· 						
									į		

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Ewan MoRobbie

CHAIN OF CUSTODY RECORD

ACCUTEST LABORATORIES LTD.

☐ 146 Colonnade Rd., Unit 8 Ottawa, ON K2E 7Y1

Ph: (613) 727-5692 Fax: (613) 727-5222

☐ 608 Norris Court Kingston, ON K7P 2R9

Ph: (613) 634-9307 Fax: (613) 634-9308

Section 2012 - Comment of the Commen	
March Contract and State of the	(a) Y 25 3 (v.)
2000 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Self Server and the second transfer of the additional districts of the self-second sec	A de Arthur Contract and stocker should
	CONTRACTOR OF THE PROPERTY OF
	BOOKEN, TO AND SOME AND SOME AND SOME SOME
Market Committee of the	
3020-00-00-00-00-00-00-00-00-00-00-00-00-	changer and the second commencer and the second these
E	
VA77	

Company Name:		Addr	ess:									·	14 -	4		
GOLDERASSOC	IATES	32 STEACIED						س			"/	/Fax R	esuits	to:		
Report Attention:		City/Prov:					Postal Code:							11 - 4	Cartlin M	
CATTLIN M.		K	LMA	(TA			Kak	ZA9 ☐ E-mail Results to					its to:	Cairinii		
Phone: Ex		Proje	ect#				* Quo	ation#	2017	Ó	٦ ,	Conv	of Dac	ulte to		
5929600 6	166	0.5	5112	s Num	73	3	<u> </u>		5 2			Сору	01 1763	uits to.	•	
* Waterworks Name:		* Wa	terwork	s Num	ber:				-						ater samples, all ex	
	<u> </u>	<u> </u>									be i	eporte	d wher	re appl	icable legislation red	quires.
Invoice to:								CAMI	DI E AN	NALYSI	S PEO	IIIPET				
(if different from above)								JAMI	7	IALISI	3 KEG	I	<u>, </u>	TT	☐ Indicate: F=Filter	red or P=Preserved
(771		1/4		1		1			_	
		×	a (§	o Se	2	تِ <u>ت</u>		2-							ed 153 fc.)	<u> </u>
		atr P.	28	rtabi	ine	D be	V	60			1				Seg.	£ #
			mple Type Codes below	<u>o</u> z	캴	St.	# 14	1 3/		-					% 2 % 2 % -	<u> </u>
		Sample Matrix i.e. Water, Soil, Paint	* Sample Type see Codes belor	MOE Reportable? Y = Yes N = No	of Containers	N S	3 9	7 3							Criteria Required (i.e. Reg.170, Reg.153, CCME, PWQO etc.)	ă E
		Sal ×	* S3	2 "	ō	Sus	5 W	1563		,						75
Sample ID	* Date/Time Collected		* 9	*	**	** Service Required R =Rush S=Standard	$\left \vec{e}_{o}\right $	6.					ļ		J e	
1-PPWm	MARCH 17/05	W	AW	1	4	<>>	7									575146
MW99-2		1					1			* -3 -		~				147
m w99-3							F_{i}			į						780
mw 99 - 6							1 -									/49
01-PPWM		1	1	7	1	14	1						†			1 (本
11100-(1-10)	<u> </u>		<u> </u>		ļ	 	 -	 			1		-			
		ļ	ļ								i,		-		_	
				<u> </u>	<u> </u>		<u></u>						<u> </u>		·	
							. 3						1			100
				Î -			ļ ;	1						1		
													<u> </u>			
Sample Type Codes for Drinking Wat	ter Systems: RW = Raw Water	er, RW	FC = R	aw Wa	ter For	Consu	nption,	TW = Tr	eated V	Vater at p	point of	entry to	distrib	ution, I	DW = Distribution/Plum	nbing Water
"MOE Reportable" refers to the require Sampled By:	rements under the SDWA for i	mmedia	ate rep	orting o		ts, which rauished		icators (or adver		quality Date/Tir		Jwner/	∪perato	or, MOE, and MOH Me Comments	Gooler Temp
HARDLD CAMERO								AME	DIDA		- 310, 111				Comments	(°C) on Receipt
Work Authorized By (signature):	Date/Time:	<u></u>			Rece	ived By	Lab:	TUVIC	1-1	, 	Date/Tir	ne:				المراج
Hall							Z.C	5)				410	17	S	V 400	
* Indicates a required field. If not c	omplete, analysis will proceed	only o	n verific	cation o	f missi	ing infor	mation.	A quotat	ion num	ber is re	auired.	if one v	/as pro	vided.	-	
** There may be surcharges applie	d to "Rush" service. Please	e check	with la	b prior	to sub	mission	of samp	les for r	ush ana	lysis to c	onfirm	availabi	lity and	pricing	<u>.</u>	7 - 2

Client: Golder Associates Ltd.

32 Steacie Drive Ottawa, ON

K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

Date Submitted:

2510776

Date:

2005-06-17 2005-06-09

Project:

051120733

P.O. Number:

250055

Chain of Custody Number: 28384							Matrix:		Groundwater	
		LAB ID:	391055	391056	391057	391058	391059		GUIDELINE	
	Samı	ple Date:	2005-06-09	2005-06-09	2005-06-09	2005-06-09	2005-06-09			
		mple ID:	S-1	S-2	S-3	S-4	S-5			
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
omide	mg/L	0.05	0.16	0.15	<0.05	1.36	1.53			<u> </u>
loride	mg/L	1	313	105	232	249	255		[
ssolved Organic Carbon	mg/L	0.5	3.5	1.1	0.7	0.6	1.4			
oride	mg/L	0.10	0.10	0.10	<0.10	0.18	0.18		ł	
orde NH3 (Ammonia)	mg/L	0.10	0.05	0.14	0.04	0.59	0.58			
IO2 (Nitrite)	mg/L	0.02	<0.10	<0.10	0.13	<0.10	<0.10			
IO3 (Nitrate)	mg/L	0.10	29.6	<0.10	21.5	0.15	<0.10		1	ł
phate	mg/L	1	59	25	32	6	4			
al Kjeldahl Nitrogen	mg/L	0.05	0.47	0.56	0.21	0.77	0.78		1	
ai ryeldani Nillogen	l llight	0.00	0.47	0.55	J		""			
		1								
	1					į				1
	- 1						l			
									-	
						•			80	
					,		A CHIVED		@QVDES	[
			1						161	
		ł		•			1364		1 12	l
	Í	'		1			/⊰	JUN 30 2005	NSS ASSA	į
								, N	10	} {
		ł		İ	1			0	g) }
							111	2	- Z	1
				İ			/ /	=	7.5	/
	1		1				1000	5	3/	
					l		["/	
						l.	\ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
							1 1			
							l l			
									ĺ	
								į		
	1	i i	1				ı H			

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Client: Golder Associates Ltd.

32 Steacie Drive Ottawa, ON

K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2510776

Date: **Date Submitted:**

2005-06-17 2005-06-09

Project:

051120733

P.O. Number:

250055

Chain of Custody Number: 28384							Matrix:		Groundwater	
Onem of Odelody Humber. 2000-			391060	I		T			GUIDELINE	
		•	2005-06-09							
			S-6	 				1		
			"			1				
					ŀ			1		
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNIT
Bromide	mg/L	0.05	<0.05							
Chloride	mg/L	1	296		i		ł			
Dissolved Organic Carbon	mg/L	0.5	7.5	-						
luoride	mg/L	0.10	<0.10			1				
	mg/L	0.02	0.33		1	ŀ	-			
N-NH3 (Ammonia)		0.10	<0.10		1		1			-
N-NO2 (Nitrite)	mg/L	0.10	<0.10							
N-NO3 (Nitrate)	mg/L				1	1			1	
Sulphate	mg/L	1	67	*	1	1	ł			
Fotal Kjeldahl Nitrogen	mg/L	0.05	0.72			Į				
	1				1					
			Ì	•	İ	1	.	1		
						1		ı		
				Ì	1		1			
				1	•			1	1	
			•			i .	ŀ			
	,						1	ı		l
	1		ŀ		1			I	1	
	<u> </u>				1			1		ļ
							1		t-\	
				l			1 /	1	TO SE	
				l			1 /5%	1	100/	
				Į.	1		T 127		77	λ
				1		ĺ	1 13	1 2	/ À	١١ .
			1		1		1 de	W .	3	5)
		1	1				C	-0	1 6	3 /
					1			JUN 3 0 200:	- B	1/
				ł		1	A = A A A	1 18	1/2/2	V
		l				I	1×1	्र	1\ /8/	1
		l	1				1 1 12	The same of the sa	1 /	
		L	L			<u> </u>		1 12/4		

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Client: Golder Associates Ltd. 32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caitlin Martin

Report Number: Date:

2510776 2005-06-17 2005-06-09 Date Submitted:

051120733

Project:

250055

P.O. Number:

							Matrix:		Groundwater	
Chain of Custody Number: 28384		.00							GUIDELINE	
	Cample Date:									
	Sample ID:		LAB BLANK	LAB QC	QC RECOVERY	DATE ANALYSED				
				RECOVERY	RANGE					
DABANETED	UNITS	MDF						TYPE	LIMIT	UNITS
Parameter	╀	0.05	<0.05	102	70-130	2005-06-13				
opinod of the state of the stat	mg/L		⊽	100	90-110	2005-06-14				
Oilong Organic Carbon		0.5	<0.5	102	89-111	2005-06-14				
	-	0.10	<0.10	105	85-115	2005-06-13				
(Singa Walls)		0.02	<0.02	100	85-115	2005-06-10				
N.O.S. (Nimerica)	_	0.10	<0.10	101	90-110	2005-06-13				
Marco (Marie)		0.10	<0.10	26	90-110	2005-06-14			•	
N-NOS (Nitrate)			٧	100	90-110	2005-06-13				
		. 00	<0.05	82	77-123	2005-06-13				
								<u> </u>		,
								//	3	
								/		2
		<u>. </u>			-			<u></u>	K	Á.
								ĺ	יע	S
								31/	13	7
								1	0	21.4
									N	17
	-							//	ĵo!	C3
		_						/	<u>ب</u> د	-

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

Inorganic Lab Supervisor APPROVAL:

Results relate only to the parameters tested on the samples submitted for analysis.

CHAIN OF CUSTODY RECORD

28384

ACCUTEST LABORATORIES LTD.

☐ 146 Colonnade Rd., Unit 8 Ottawa, ON K2E 7Y1

Ph: (613) 727-5692 Fax: (613) 727-5222

☐ 608 Norris Court Kingston, ON K7P 2R9 Ph: (613) 634-9307 Fax: (613) 634-9308

- Sampler, Yellow - Laboratory, Pink - With Report

Company Namer / Les As	Sø c	Address:	2 S;	le .	ic p	V _t				☐ Fa	ax Res	sults t	o: _		
Report Attention:	fin	City/Prov:	te	01	V	Postal				E-	mail F	Result	s to:		· · · · · · · · · · · · · · · · · · ·
Phone: Ex 5 9 2 9 6 00 Ex	ct :	Project #	07	' ? >		* Quot	ation#	203	5	□ Cc	opy of	Resu	its to:		· · · · · · · · · · · · · · · · · · ·
* Waterworks Name:		* Waterwork		er:										er samples, all exc able legislation rec	
Invoice to: (if different from above)					•		SAMI	PLE AN	ALYSIS	REQUI	RED	· - 1	ı T	☐ ← Indicate: F=Filter	ed or P=Preserved
	* Date/Time	Sample Matrix i.e. Water, Soil, Paint * Sample Type (see Codes below)	MOE Reportable? Y = Yes N = No	# of Containers	Service Rush S	No Bach								Criteria Required (i.e. Reg.170, Reg.153, CCME, PWQO etc.)	Laboratory
Sample ID	Collected /		* //	4	* "				-					2	an-x
5-2	Derd 9/65	GW	1		1									1 2	1000
C-3			 	+							_	G	<u>~</u>		に大い
5-4				T									OLOG		725
5-5	()	. /		1						131	17		1	K 2	689
5-6				/	11/						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2		181	1060
				<u> </u>	•							2	Programme.	5	•
						ļ				111		NO.			
					<u> </u>	·	ļ 			<u> </u>	341	_	V	/	
Sample Time Codes for Drinking Min	tor Sustance: DW - Daw West	PMEC - 5	<u> </u>		<u></u>		7704 - 7-		(AWA			N = Distribution (D)	-bi W
Sample Type <u>Codes</u> for Drinking Wa "MOE Reportable" refers to the requi	rements under the SDWA for in	mmediate rep	orting of	result	s, which	mpuon, n are ind	ivv = II	eated W	rater at p se water i	oint of ent quality, to	the Ov	vner/O	perator,	W = Distribution/Plum MOE, and MOH Me	dical Officer.
Sampled By:	Date Time:			Relin	guisbec		1)	D	ate/Time:	(معه	9/	/ <<	Comments	Cooler Temp (°C) on Receipt
Work Authorized By (signature):	Date/Time:				ived By	76	Tra	00	,	ate/Time:	9/,	ハイ		1	
* Indicates a required field. If not o	omplete, analysis will proceed to "Rush" service. Please	only on verific	cation of	missi	ng infor	nation.	A quotat	ion num	ber is rec	quired, if o	ne was	s provi	ded.]	

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

Date Submitted:

2510766 2005-06-10

Date:

2005-06-09

Project:

051120733

P.O. Number:

250055

Chain of Custody Number	er: 28384	·							P.O. Number: Matrix:		250055 Groundwater	<u> </u>
				LAB ID:		391035	391036	391037	391038		GUIDELINE	<u> </u>
			Samı	ole Date:	2005-06-09	2005-06-09	2005-06-09	2005-06-09	2005-06-09			
			Sa	mple ID:	S-1	S-2	S-3	S-4	S-5			
· · · · · · · · · · · · · · · · · · ·	PARAMETER		UNITS	MDL						TYPE	LIMIT	UNITS
Escherichia Coli			ct/100mL		<10	<10	<10	<10	<10			
												1
												ĺ
				ļ			,	,	1			1
				-								
					1	1						
			OLDER									
		WECEIVED 11	13	Į								
		CORN	Paga	1					· ·			
		18	2	1					5	ŀ		
		1813	the same of the sa	l	}	. .			1		İ	
				i		:			1			Ì
		$\mathcal{L}_{\mathcal{O}_{\mathbf{k}}}$							1			1
		WA -		}	1						1	
		-						ĺ				1
												}
												ļ ·
				}	1		1	1	\ \ \ \ \		1	ì

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVALE

Krista Quantrill

Microbiology Analyst

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caltlin Martin

Report Number:

2510766

Date: **Date Submitted:** 2005-06-10 2005-06-09

Project:

051120733

P.O. Number:

250055

hain of Custody Number: 28384							Matrix:		Groundwater	
			391039		T T				GUIDELINE	
			2005-06-09	——————————————————————————————————————						
			S-6					ll .		
					1		1	ii .		
·			ļ			1		l		
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNIT
scherichia Coli	ct/100mL	·	<10							
			ļ							
			l.			Ì	}	1		
							1			
	1	ĺ	.1		ĺ		1	1		
								1		
								1		
					1					
	,				1					
		1			1					
	1.					1		 		
800 DE	İ	ì			1	1	ł	1		
	1				1			 		
					}	1		i		
	ĺ	ł				+ 1				
1 2000	i.							1	1	
	ł							1		
		l .						H		
en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de			ŀ			ł				
		1			1	ļ		i		
					Ì	1				
				•	1			1		
	1							ĺ		İ
								1		ļ
					1			1		
	ļ	1	1		1	1	1	J.		j
		1			1	1	1	1	1	
			1							
	1				1			1		
	ĺ		l			1		li .	İ	l

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROMAG

Krista Quantrill Microbiology Analyst

ACCUTEST LABORATORIES LTD

REPORT OF ANALTOIS

Client: Golder Associates Ltd.

32 Steacie Drive Ottawa, ON K2K 2A9

Attention: Ms. Caltlin Martin

Report Number:

2515262

Date:
Date Submitted:

2005-08-12 2005-08-03

Project:

05-1120-733

P.O. Number:

250055

							r.o. Rullibel.		250055	
Chain of Custody Number: 13173							Matrix:	· .	Water	
		LAB ID:	401848	401849	401850	401851	401852		GUIDELINE	
	Samp	ole Date:	2005-08-02	2005-08-02	2005-08-02	2005-08-02	2005-08-02			
	Sa	mple ID:	SA #1	SA #2	SA #3	SA #4	SA #7	i .		
			i .					-		
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
Bromide	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	1.31			
Chloride	mg/L	1	365	367	200	101	269	l .	1	
Dissolved Organic Carbon	mg/L	0.5	3.0	3.8	0.8	1.8	1.3	1	İ '	
Fluoride	mg/L	0.10	<0.10	<0.10	<0.10	0.15	0.21	l .	1	
N-NH3 (Ammonia)	mg/L	0.02	0.04	0.09	0.05	0.20	0.86	1		
N-NO2 (Nitrite)	mg/L	0.10	0.27	0.31	0.91	<0.10	<0.10	A	1	
N-NO3 (Nitrate)	mg/L	0.10	24.1	25.4	14.6	<0.10	<0.10	1	j '	
Sulphate	mg/L	1	- 70	70	40	27.	3	ı		
Total Kjeldahl Nitrogen	mg/L	0.05	0.46	0.50	0.18	0.38	1.07	l		

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Inorganic Lab Supervisor

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2515262

Date: **Date Submitted:** 2005-08-12 2005-08-03

Project:

05-1120-733

250055

P.O. Number:

Chain of Custody Number: 13173							Matrix:		Water	
		LAB ID:	401853	401854		1			GUIDELINE	
	Sam	ple Date:	2005-08-02	2005-08-02		<u> </u>				
	Sa	imple ID:	SA #8	SA #9			İ			
		1				ļ		TVDE	LIMIT	UNITS
PARAMETER	UNITS	MDL 0.05	40.0E	16.0		 	 	TYPE	CIMIT	UNITS
romide hloride	mg/L	0.05	<0.05 297	4580						
issolved Organic Carbon	mg/L	0.5	3.6	12.3		Í	1.			
issolved Organic Carbon luoride	mg/L mg/L	0.10	0.12	0.19				İ		
I-NH3 (Ammonia)	mg/L	0.10	0.12	2.77		1				
-NO2 (Nitrite)	mg/L	0.02	<0.10	0.87						
I-NO3 (Nitrate)	mg/L	0.10	<0.10	0.64			1			
Sulphate	mg/L	1	69	77						
otal Kjeldahl Nitrogen	mg/L	0.05	0.69	3.81		1		•		
						1	1			
							1 .			
							†			
		,		-			1			
								1		
				-		j				
	Ī		ľ						j	
			·			ļ				
				4.		1				
	: 1			*	_					٠.
							1			
					·	l				
			*				1			
				٠,			1		*	
								,		
	,						1			

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

Date:

2515262 2005-08-12

Date Submitted:

2005-08-03

Project:

05-1120-733

P.O. Number:

250055

Chain of Custody Number: 13173							Matrix:		Water	
		LAB ID:	1						GUIDELINE	
		ple Date:								•
		mple ID:	LAB BLANK	LAB QC	QC	DATE		1		
	-			%	RECOVERY	ANALYSED		1		
				RECOVERY	RANGE					
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
Bromide	mg/L	0.05	<0.05	102	70-130	2005-08-08				
Chloride	mg/L	1	<1	97	90-110	2005-08-08				
Dissolved Organic Carbon	mg/L	0.5	<0.5	103	89-111	2005-08-04				
luoride	mg/L	0.10	<0.10	105	85-115	2005-08-08				
N-NH3 (Ammonia)	mg/L	0.02	<0.02	104	85-115	2005-08-04				
N-NO2 (Nitrite)	mg/L	0.10	<0.10	103	90-110	2005-08-08	!			
V-NO3 (Nitrate)	mg/L	0.10	<0.10	100	90-110	2005-08-08	1			
Sulphate	mg/L	1 1	<1	100	90-110	2005-08-05				ŀ
Total Kjeldahl Nitrogen	mg/L	0.05	<0.05	94	77-123	2005-08-04				
otal rycloani mili ogen	IIIg/E	0.00	-0.00	1 "	// 120		1			İ
	1	1			·					
				, .	Į.				1	
				Ì				1		
			i						1	
						İ		1		
				· .			1			i
							1	1		
		ł								
								1	1	
			İ							
	1									
]		j			l
	1							1		
	1									
	1	ŀ								
	1	1	· ,		· .					
		1						1.		

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Ewan McRebbje

CHAIN OF CUSTODY RECORD

ACCUTEST LABORATORIES LTD. 146 Colonnade Rd., Unit 8 Ottawa, ON K2E 7Y1

Ph: (613) 727-5692 Fax: (613) 727-5222

☐ 608 Norris Court Kingston, ON K7P 2R9 Ph: (613) 634-9307 Fax: (613) 634-9308

Waterworks Name:	266	Proje	Prov: k				Postal (Code:	· 5.		4	Fax Ro			1613-592 CMARTIN	
Waterworks Name:	Z66	Proje	oct # 05 - 1				* Ouete	$\frac{2}{\sqrt{2}}$) .		0	E-mail	Result	ts to:	CMARTIL	@ GOLDG
Waterworks Name:	266	Proje	oct # 05 - 1				* Oust									
invoice to:		* Wa	terwork		- 1	33	Quota	ation #				Сору	of Resu	ults to:		· · · · · · · · · · · · · · · · · · ·
				s Num	ber:										ater samples, all ex cable legislation re	
								SAMF	PLE AN	IALYSIS	REQ	UIRED		,		
f different from above)			Г	ı	T	<u> </u>			L	I 			<u> i.</u>	┼-┴-	Indicate: F=Filte	ered or P=Preserved
		Sample Matrix e. Water, Soil, Paint	* Sample Type see Codes below)	MOE Reportable? Y = Yes N = No	# of Containers	** Service Required R=Rush S=Standard	50055	50056	~	Qo +	hation H'S	.			Criteria Required (i.e. Reg.170, Reg.153, CCME, PWQO etc.)	Laboration dentification
Sample ID	* Date/Time Collected	Ω e	* S	* MC	#	# S. 유. 프	2	バ	ž.						5 ej S	148 - 19 - 1 18
SA H I I	WG 2/05	W	RW	N	4	5	_//	,							4	ナンタロ
54 4 Z	,30m		1	1	4	1									<u>.</u>	1249
5A # 3					4			/								リオズ色
5A = 4		1	1	1	4	b										184)
SA * 5		1	T		5	1			· '							
SA # 6	\7				5											
A + 7	. Y				4			/						y/		18EQ
SA" 8					Н											4863
5A* 9					И											REL
	<u> </u>															1
ample Type Codes for Drinking Water Sy	ystems: RW = Raw Wate	r, RW	FC = R	aw Wa	ter For	Consun	nption,	TW = Tr	eated V	Vater at p	oint of	entry to	distribu	tion, D	W = Distribution/Plur	nbing Water
MOE Reportable" refers to the requireme ampled By:	ents under the SDWA for in Date/Time:	mmedia	ate rep	orting o		s, which quished		cators o	f adver		quality, ate/Tim		Owner/C	perator,		
Tom MEARTHY	AVG 2105	5			1.000	quianeu	7	. /.	I/I		a(6/ 1 1 1	I C .			Comments	Cooler Temp (C) on Receip
Vork Authorized By (signature).	Date/Time:	<u></u>			Rece	ived By	Lab:		1.1	D	ate/Tim	ie:	/05	7:75		

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2515263

Date:

2005-08-12 2005-08-03

Date Submitted:

05-1120-733

Project:

250055

P.O. Number:

omide mg/L 0.05 <0.05	Chain of Custody Number: 13173							Matrix:		Water	
PARAMETER UNITS MDL										GUIDELINE	
PARAMETER UNITS MDL TYPE LIMIT UI UI UI UI UI UI UI		Samp	le Date:	2005-08-02				ļ			
momide mg/L 0.05 <0.05		Saı	mple ID:	SA #5	SA #6						
momide mg/L 0.05 <0.05					ł				A		
momide mg/L 0.05 <0.05						1	<u> </u>				
mg/L 1 1270 29		UNITS							TYPE	LIMIT	UNIT
mg/L 0.5 3.6 1.6	Bromide					i					
mg/L 0.01 0.17 0.09	Chloride						1			i	
uoride mg/L 0.10 0.24 0.14 NH3 (Ammonia) mg/L 0.02 1.27 0.07 NO2 (Nitrite) mg/L 0.10 <0.10	Dissolved Organic Carbon					l	1		1	1	
MH3 (Ammonia)						ľ	1		J		
NO2 (Nitrite)	Fluoride						1	1	ł		
NO3 (Nitrate) mg/L 0.10 0.40 0.35 ulphate mg/L 1 6 24 otal Kjeldahl Nitrogen mg/L 0.05 1.61 0.22						1.			1		
mg/L						l					
otal Kjeldahl Nitrogen mg/L 0.05 1.61 0.22									1		
						1			1	1	
htal Phosphorus mg/L 0.01 0.20 3.05	Total Kjeldahl Nitrogen								1		
	Total Phosphorus	mg/L	0.01	0.20	3.05						
											1
]					1		1	1	
							1.			1	1
		1 1				•		1		1	
		!			į	·			B		
								1		1	
										1	
								1			
]									l
					j		I			,	
] [1				l
		1								 	
		1						1			
		1									
							Í	1	:	[·	
			-								
		1 1							*		
		1 1		· [

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Ewan McRo

1 of 2

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caltlin Martin

Report Number:

2515263

Date: **Date Submitted:** 2005-08-12 2005-08-03

Project:

05-1120-733

P.O. Number:

250055

Chain of Custody Number: 13173					,		Matrix:		Water	
		LAB ID:		**************************************	L	ļ		.l	GUIDELINE	
		le Date:						1		
	Sam	npie ID: LAI	BBLANK	LAB QC	QC	DATE		l l		
				% BECOVERY	RECOVERY	ANALYSED	1			
DADAMETER	1 110170			RECOVERY	RANGE			1	T	
PARAMETER Bromide	UNITS	MDL	-0.05	400	70.400	2005 00 05		TYPE	LIMIT	UNITS
oromide Chloride	mg/L	l l	<0.05	102	70-130	2005-08-05		1		
Dissolved Organic Carbon	mg/L	0.5	<1	97	90-110	2005-08-08		1		
Dissolved Reactive Phosphorus	mg/L		<0.5	103 103	89-111 85-115	2005-08-04				
luoride	mg/L		<0.01			2005-08-10		i .		
N-NH3 (Ammonia)	mg/L mg/L		<0.10 <0.02	102 104	85-115 85-115	2005-08-05 2005-08-04			l	
N-NO2 (Nitrite)	mg/L		<0.02	103	90-110	2005-08-08		I	}	
N-NO3 (Nitrate)	mg/L		<0.10	97	90-110	2005-08-09		1		
Sulphate	mg/L	1	<1	100	90-110	2005-08-05		ı		
otal Kjeldahl Nitrogen	mg/L		<0.05	94	77-123	2005-08-04				
otal Phosphorus	mg/L		<0.01	102	88-112	2005-08-09		1		
		0.01	-0.01	. 102	00-112	2000-00-03				
		1	1				-			
								1		
								i .		
			- 1							
			ŀ					l ·		
		l						. .		
		1	ı					•		
				j						
] ·		
			}							•
		1	.]			į			j	
		1	1		Į.]		
•					İ					
			•					I		
	1	1			į					

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON

K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2515272

Date:

2005-08-05

Date Submitted:

2005-08-03

Project:

05-1120-733

P.O. Number:

Chain of Custody Number: 13173							Matrix:		Surfacewater	
		LAB ID:	401876	401877	401878	401879	401880		GUIDELINE	
	Sam	ple Date:	2005-08-02	2005-08-02	2005-08-02	2005-08-02	2005-08-02			
	Sa	mple ID:	SA #1	SA #2	SA #3	SA #4	SA #5			
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
scherichia Coli	ct/100mL		<10	<10	<10	<10	<10)	
				•					•	
	ļ									
					1	•		ł		
	1	{	1	1		1		i)	
•										
	-			}	ľ	1			1	
		1		ļ						
	Į.	ļ ·	·		1	}		1	\ ·	
		Į.								
	Į.	į.	į	ļ				Į.	ļ	
			Ė	ļ-		4 1		ĺ	1	
		1		•			. 1	1 .		
		1							}	
	1		[ļ	
									1	
	1	Ì			ł					
		İ		1					İ	
				*						
	1	Ì]]	1				
		l								
	1		ł	ł					1 1	
				1	l					
	ł	1			1 .				1. 1	
	1	1]	
	.	l	I	1	B	I				

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

PPROVAL:

rista Quantrill

Microbiology Analyst

Client: Golder Associates Ltd.

32 Steacie Drive

Ottawa, ON K2K 2A9

Attention: Ms. Caitlin Martin

Report Number:

2515272

Date:

2005-08-05

Date Submitted:

2005-08-03

Project:

05-1120-733

P.O. Number:

Matriv. Chain of Custody Number: 13472 Surfacewater

Chain of Custody Number: 13173							Matrix:		Surfacewater	
		LAB ID:	401881	401882	401883	401884	ļ		GUIDELINE	
	Samp	le Date:	2005-08-02	2005-08-02	2005-08-02	2005-08-02	<u> </u>			
	Sai	mple ID:	SA #6	SA #7	SA #8	SA #9	ļ			
			i							
							ļ	<u> </u>	T	· · · · · · · · · · · · · · · · · · ·
PARAMETER	UNITS	MDL.				ļ		TYPE	LIMIT	UNITS
scherichia Coli	ct/100mL		<10	<10	<10	<10			ł	
	1 1		}							
] -				ł	i				
]					1	ļ]	
	l .					ļ				
]									
	1					i	ļ			
						ŀ			İ	1
)		1]	J
	1		ļ ·				1			
	1									ļ
						1				
			1			ł				Ì
					1					
	,					1			1	
	·	:		. •					1	
	l					1				<u> </u>
						•	i i			İ
	}		}		'					l
			j		·	ĺ	1	•		
			ĺ					ļ	1	
	I .					1	1	l	1	I

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Krista Quantrill

Microbiology Analyst

Client: Golder Associates Ltd.

32 Steacie Dr. Kanata, ON

K2K 2A9

Attention: Ms. Caitlin Cooke

Report Number: Date:

2521439

2005-10-24

Date Submitted:

2005-10-21

Project:

05-1120-733

P.O. Number:

250055

							P.O. Number: Matrix:		Groundwater_	
in of Custody Number: 33752			110007	419908	419909	419910	419911		GUIDELINE	
in or oddiody		LAB ID:	419907	2005-10-21	2005-10-21	2005-10-21	2005-10-21			
	Samp	le Date:	2005-10-21	G-2	G-3	G-4	G-5			
	Sar	nple ID:	G-1	G-2	""		1 .			
			1		l		1			
				 		1		TYPE	LIMIT	UNIT
PARAMETER	UNITS	MDL		<10	<10	<10	<10			
herichia Coli	ct/100mL		<10	1		1)
inglicitia con]		Į.			ì				l
	1	1		1		į				
	1	}	}			i		1	1	}
	1	ł	Į.	1	}	1.		l	1	1
A ASSOCI	1	1			1			İ]
0,		1	}	}	1		1		1	1
	1	1		Į	1	1	1			l
	1	1		İ	i	İ		.	1	1
		l	1	1	1	1				1
NOV 4 and		İ			(1	1	I	1	1
NOV 14 2005	1		1					i	1	1
	i		1	1	1		1	ll .	}	i
	1		1	1		1	}	N .	}	1
	1	1	1	· ·		1		l l	1	1
				į.		1	}		1	1
			1.	İ	}	1]	N .	ì	1
	1	1	1		1	1		H	(1
		1	1	(1	1		1	1	1
	1	1			1	Į.		1	1	}
	1	1	1	}	1.		-	I		1
	1		1	Į.	1	1	1	1	1	1 -
	}	1	1	T	1			1	}	ĺ
	1	1 .	1	- {	1	1		N .]	1
	1	1		4	- {	1	1	N .	}	
	1			Ì		1	1	1	1	
	1			1		1			1	1
		1				1		1	1	1
	- 1	1	1	1	1	1	1	И	1	ı

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration

Comment:

APPROVAL:

Tim McCooeye QC Manager

1 of 2

Client: Golder Associates Ltd. 32 Steacie Dr.

Kanata, ON

K2K 2A9

Attention: Ms. Caitlin Cooke

Groundwater 05-1120-733 2521439 2005-10-24 2005-10-21 250055 Report Number: Date: Date Submitted: P.O. Number: Project: Matrix:

Chain of Custody Number: 33752			3,00,,					GUIDELINE	
			2005 10.21						
	Sar	Sample Date:	9-9						
CLAUTO	STINITS	ΨĐ					TYPE	LIMIT	UNITS
Escherichia Coli	ct/100mL		<10		 				
				٠					
				<u>-</u>					
					<u>:</u>				
						· · · ·			
	·								

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment: APPROVAL: Tim McCooeye

hples summed for amenyon QC Manager

Resultation only community and on the second

Client: Golder Associates Ltd.

32 Steacie Dr. Kanata, ON K2K 2A9

Attention: Ms. Caltlin Cooke

Report Number:

2521451

Date:

2005-10-28

Date Submitted:

2005-10-21

Project:

05-1120-733

P.O. Number:

250055

Chain of Custody Number: 33752				·			P.O. Number: Matrix:		250055 Groundwater	r
		LAB ID:	419944	419945	419946	419947	419948		GUIDELINE	
		pie Date:	2005-10-21	2005-10-21	2005-10-21	2005-10-21	2005-10-21			
	Sa	ample ID:	G-1	G-2	G-3	G-4	G-5			
				ł		·				
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
Bromide	mg/L	0.05	<0.05	<0.05	<0.05	0.12	<0.05			
Chloride	mg/L	1 1	275	317	320	113	250		1	l
Dissolved Organic Carbon	mg/L	0.5	2.9	2.7	3.1	1.0	<0.5	ĺ	1	
Fluoride	mg/L	0.10	0.14	0.15	0.14	0.12	0.13	ľ	1	ł
N-NH3 (Ammonia)	mg/L	0.02	0.52	0.08	0.08	0.12	0.04	ı	1	ł
N-NO2 (Nitrite) N-NO3 (Nitrate)	mg/L	0.10	<0.10	<0.10	<0.10	<0.10	<0.10			ł
pH	mg/L	0.10	<0.10	19.0	21.8	<0.10	19.4		1	
Sulphate			7.67	7.83	7.85	7.93	7.80		1	ł
Total Kjeldahl Nitrogen	mg/L	0.05	62	67	62	23	42]	
· sour system i sitt offers	mg/L	0.05	0.73	0.42	0.45	0.30	0.21		'	
	1		1		İ		i i		1	
	1								1	
	1								1	
		i					1			
	1									
	1									
	1	1					j i		1 1	
									<u> </u>	
]	
	1					•]	
							ſ		1	
									1 1	
									j - l	
	j .]	
	1					-			Į. I	
		[[ı				1 1	
	1]	·		ŀ		[[
				j	- 1			-	1 1	
				[1	1 1	

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Client: Golder Associates Ltd.

32 Steacie Dr.

Kanata, ON K2K 2A9

Attention: Ms. Caitlin Cooke

Report Number:

Date Submitted:

2521451

Date:

2005-10-28 2005-10-21

Project:

05-1120-733

250055

P.O. Number: Matrix:

Groundwater

Chain of Custody Number: 33752							Matrix:		Groundwater	
Attent At Addition to the		LAB ID:	419949						GUIDELINE	
		ole Date:	2005-10-21							
	Sa	mple ID:	G-6		1			1 .		
						[{	#		
				, i	i	l	<u> </u>			
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
Bromide	mg/L	0.05	1.52					1		1
Chloride	mg/L	1	293	·		1	İ	i	1	i
Dissolved Organic Carbon	mg/L	0.5	<0.5		}	ļ	1]		ĺ
luoride	mg/L	0.10	0.22		1	l	l			
N-NH3 (Ammonia)	mg/L	0.02	0.89					1		1
N-NO2 (Nitrite)	mg/L	0.10	<0.10		1	}	Į			i
N-NO3 (Nitrate)	mg/L	0.10	<0.10]					ı
oH	y.c.	"	8.10		ļ		[ı
Sulphate	mg/L	1	4	-	1	l				ļ
Total Kjeldahi Nitrogen	mg/L	0.05	0.89		ļ]				ı
i otal Neldanii Nilii ogen	IIIg/L	0.00	0.00					l i		I
			1		ľ	1				ł
		}				J	1			l
			ľ				,			I
			ĺ			ì	}	ł		1
					i]			l
										i
					· ·	İ				l
·					ł	1				1.
]							I
			1		1		ľ	.		İ
•		1	1			ł				٠.
							1			ı
	1			٠		Ī				İ
	[i .	1		1	ł				
].	ļ	· ·			
						ł	•	1		ĺ
		[.]	1		l		{			l
					i					ļ
	i i	[1		1	ł		•		1

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Inorgania Lab Supervisor

Client: Golder Associates Ltd.

32 Steacie Dr. Kanata, ON K2K 2A9

Attention: Ms. Caitlin Cooke

Report Number:

2521451

Date:

2005-10-28

Date Submitted:

2005-10-21

Project:

05-1120-733

250055

P.O. Number:

Chain of Custody Number: 33752		LAB ID:	1				Matrix:	т	Groundwate	
	.			 	 	 	 	 	GUIDELINE	<u> </u>
		ple Date: imple ID:	LAB BLANK	LAB QC % RECOVERY	QC RECOVERY RANGE	DATE ANALYSED				
PARAMETER	UNITS	MDL						TYPE	LIMIT	UNITS
Bromide Chloride Dissolved Organic Carbon Fluoride N-NH3 (Ammonia) N-NO2 (Nitrite) N-NO3 (Nitrate) pH Sulphate Total Kjeldahl Nitrogen	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.05 1 0.5 0.10 0.02 0.10 0.10	<0.05 <1 <0.5 <0.10 <0.02 <0.10 <0.10 <0.10 5.69 <1 <0.05	96 101 96 106 101 99 94 99 100 95	70-130 90-110 89-111 85-115 85-115 90-110 90-110 95-105 90-110 77-123	2005-10-24 2005-10-26 2005-10-25 2005-10-24 2005-10-24 2005-10-24 2005-10-26 2005-10-24 2005-10-25				
						·				

MDL = Method Detection Limit INC = Incomplete AO = Aesthetic Objective OG = Operational Guideline MAC = Maximum Allowable Concentration IMAC = Interim Maximum Allowable Concentration Comment:

APPROVAL:

Inorganio Lab Supervisor

CHAIN OF CUSTODY RECORD

ACCUTEST LABORATORIES LTD.

Ph: (613) 727-5692 Fax: (613) 727-5222 ☐ 146 Colonnade Rd., Unit 8 Ottawa, ON K2E 7Y1

Kingston, ON K7P 2R9 Ph. (613) 634-9307 Fax: (613) 634-9 ☐ 608 Norris Court

100000000	000	0.000	0.00	22
	. 4		100	231
	80	***		88
2 mm	800	833	233	88
	2.5	W. 17	8 2	80 I
	æ	88	88	200
	700	- 222	и.	80
	44	-80	88	383
100 m	₩	888	88	(1)
	200	400	43	***
Section 1	600	200	88	383
88887 ×	200		200	883
3000mm	œ	886	88	880
300 W	3		w 3	w
CONTRACTOR OF THE PARTY OF THE	83	w	80	880
	380	200	7:1	889
2000.LL	. 88		N.	87
3800 T	. 8	886	20	288
1000 mar	460	w	881	33
***************************************	W	ARC 1	33	86
	8 B	822	28	80
3000	3.3		88	300
8000 m	-88	2000	Æ	140
2000	œ	ggo .	₩.	-36
3000 °	9	of t	د ۱	300
13333 C	- 40	200	2005	
33333 C	28	m.	88	888
- WWW.	388	88	88	l XX
30000.29	~@	880	33	233
40000	383		830	339
100000	× 70	222	8.0	88
200000000000000000000000000000000000000	10	882	12	30
2000	-8	882	desile in the	96
33337 ×	8 ¢	886		100
333335	-40	800	erc.	88
33322	8 2		22	٠
33000	-3	200	*	w
33330	- 68		ďΪ	88
33333	er i		53	333
000000	∾ 3	899	œ	333
10000		**	88	œ
100000	90	S	333	80
	-		_	_

				1000 - 100
Company Name:	Address:		Fax Results to:	214 122
	32 STETCH DIS-			
		Partol Codo.		
	City/Prov:	Ustal Code.	EVE-mail Results to:	EVE-mail Results to: CCOC Le FOR COCKET
	OC ALL	メスト 275		
710 P P P P P P P P P P P P P P P P P P P		# - : :		
n	Project #	Cuotation #	Conv of Results to:	
Phone:		いいつつりつ		
	を イボナーラクニーソロー			liw secretagos to act.
009676	* Materiarie Number		Note that for drinking w	Note that for drinking water samples, all excedences
* Waterworks Name:	Waterworks Indinibat:		he renorted where app	he renorted where applicable legislation requires.
	2			

-						Ť	SAME	SAMPLE ANALYSIS REQUIRED	LYSIS	REQUIF	ŒD	}		bevieserG=G to bose
Invoice to:												-	Indicate: F=Fi	Indicate: r=rileted of r=reserved
(if different from above)		ini	1	-	ired	* - n"			· ·		·		,£&f.g	
		Matri. Fa ,lioi		N = N	Redn	, p							9A ,0Y	ojsro jsofii
		ample Water, S			of Con ervice	ush S =3 رن4واً 20 05	H 9						Criteria .e. Reg.1	Labi
Sample ID	* Date/Time Collected	.e.i			S ++	<u>~20</u>				-			j)	WInb(d)
0	004 21/05	3	GW	2	4	X	X			-				400
7	Τ.	_				X	X				_			7 5
				_		X	X				-			
)				_		X	X							747
1 .						X	X							200
		7	>	>)	7	X							11. 75
				-						_				
				-						+		-		
							_		1	1	-	-		
				-	_	_			- : -			- iti	- Martinettion/F	lumbina Water
Sample Type Codes for Drinking Water Systems: RW = Raw Water, RWFC =	Systems: RW = Raw Wal	ter, RW immedi	FC = Ra	w Water	For Constant	sumption sich are i	ı, TW = ndicators	reated W	ater at p e water	quality, to	the Own	ner/Operat	Raw Water For Consumption, TW = Treated Water at point of entry to distribution, Consumption, TMOE, and MOH Medical Officer.	Medical Officer.
Sampled By:	Date/Time:				Relinquished By:	ed By:	130 C	ic.	0	Date/Time: Oct. 2x/oS	 		Comments	Cooler Jemp (CC) on Receipt
Work Authorized By (signature):	Je:			-	Received By			37			21/05	3.45 m		

Copies: White - Sampler, Yellow - Laboratory, Pink - With Report * Indicates a required field. If not complete, analysis will proceed only on verification of missing information. A protation number is required, if one was provided. ** There may be surcharges applied to "Rush" service. Please check with lab prior to submission of samples for rush analysis to confirm availability and pricing.

AFCOCR.1

TRANSMITTAL LETTES

Golder Associates Ltd.

32 Steacie Drive

Kanata, Ontario K2K 2A9

MAR 222006 Received

Telephone: 613-592-9600 Fax Access: 613-592-9601

TO: Corporation of the Nation Municipality

958 Road 500 West

RR#3

Casselman, Ontario

K0A 1M0

DATE:

March 21, 2006

JOB NO.:

06-1122-029

ATTENTION:	Mary McCuaig
------------	--------------

Sent by:

Mail

Courier

Hand Carried

Under Separate Cover

Enclosed

Picked Up

Quantity	Item	Description	
2	Report	2005 Groundwater Monitoring Program Communal Sewage Works Nation Municipality Fournier, Ontario	
Remarks:			

If enclosures are not as noted, kindly notify us.

ACKNOWLEDGEMENT REQUIRED: Yes

(Please mail/fax to Golder Associates)

No

SENDER:

C. Cooke, M.Sc.

EMAIL:

ccooke@golder.com

Per:

bb-m

